ترغب بنشر مسار تعليمي؟ اضغط هنا

Telling the What while Pointing to the Where: Multimodal Queries for Image Retrieval

81   0   0.0 ( 0 )
 نشر من قبل Soravit Changpinyo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most existing image retrieval systems use text queries as a way for the user to express what they are looking for. However, fine-grained image retrieval often requires the ability to also express where in the image the content they are looking for is. The text modality can only cumbersomely express such localization preferences, whereas pointing is a more natural fit. In this paper, we propose an image retrieval setup with a new form of multimodal queries, where the user simultaneously uses both spoken natural language (the what) and mouse traces over an empty canvas (the where) to express the characteristics of the desired target image. We then describe simple modifications to an existing image retrieval model, enabling it to operate in this setup. Qualitative and quantitative experiments show that our model effectively takes this spatial guidance into account, and provides significantly more accurate retrieval results compared to text-only equivalent systems.



قيم البحث

اقرأ أيضاً

Recently, image-to-image translation has obtained significant attention. Among many, those approaches based on an exemplar image that contains the target style information has been actively studied, due to its capability to handle multimodality as we ll as its applicability in practical use. However, two intrinsic problems exist in the existing methods: what and where to transfer. First, those methods extract style from an entire exemplar which includes noisy information, which impedes a translation model from properly extracting the intended style of the exemplar. That is, we need to carefully determine what to transfer from the exemplar. Second, the extracted style is applied to the entire input image, which causes unnecessary distortion in irrelevant image regions. In response, we need to decide where to transfer the extracted style. In this paper, we propose a novel approach that extracts out a local mask from the exemplar that determines what style to transfer, and another local mask from the input image that determines where to transfer the extracted style. The main novelty of this paper lies in (1) the highway adaptive instance normalization technique and (2) an end-to-end translation framework which achieves an outstanding performance in reflecting a style of an exemplar. We demonstrate the quantitative and qualitative evaluation results to confirm the advantages of our proposed approach.
104 - Marc Tanti 2017
When a recurrent neural network language model is used for caption generation, the image information can be fed to the neural network either by directly incorporating it in the RNN -- conditioning the language model by `injecting image features -- or in a layer following the RNN -- conditioning the language model by `merging image features. While both options are attested in the literature, there is as yet no systematic comparison between the two. In this paper we empirically show that it is not especially detrimental to performance whether one architecture is used or another. The merge architecture does have practical advantages, as conditioning by merging allows the RNNs hidden state vector to shrink in size by up to four times. Our results suggest that the visual and linguistic modalities for caption generation need not be jointly encoded by the RNN as that yields large, memory-intensive models with few tangible advantages in performance; rather, the multimodal integration should be delayed to a subsequent stage.
Manipulating visual attributes of images through human-written text is a very challenging task. On the one hand, models have to learn the manipulation without the ground truth of the desired output. On the other hand, models have to deal with the inh erent ambiguity of natural language. Previous research usually requires either the user to describe all the characteristics of the desired image or to use richly-annotated image captioning datasets. In this work, we propose a novel unsupervised approach, based on image-to-image translation, that alters the attributes of a given image through a command-like sentence such as change the hair color to black. Contrarily to state-of-the-art approaches, our model does not require a human-annotated dataset nor a textual description of all the attributes of the desired image, but only those that have to be modified. Our proposed model disentangles the image content from the visual attributes, and it learns to modify the latter using the textual description, before generating a new image from the content and the modified attribute representation. Because text might be inherently ambiguous (blond hair may refer to different shadows of blond, e.g. golden, icy, sandy), our method generates multiple stochast
Direct computer vision based-nutrient content estimation is a demanding task, due to deformation and occlusions of ingredients, as well as high intra-class and low inter-class variability between meal classes. In order to tackle these issues, we prop ose a system for recipe retrieval from images. The recipe information can subsequently be used to estimate the nutrient content of the meal. In this study, we utilize the multi-modal Recipe1M dataset, which contains over 1 million recipes accompanied by over 13 million images. The proposed model can operate as a first step in an automatic pipeline for the estimation of nutrition content by supporting hints related to ingredient and instruction. Through self-attention, our model can directly process raw recipe text, making the upstream instruction sentence embedding process redundant and thus reducing training time, while providing desirable retrieval results. Furthermore, we propose the use of an ingredient attention mechanism, in order to gain insight into which instructions, parts of instructions or single instruction words are of importance for processing a single ingredient within a certain recipe. Attention-based recipe text encoding contributes to solving the issue of high intra-class/low inter-class variability by focusing on preparation steps specific to the meal. The experimental results demonstrate the potential of such a system for recipe retrieval from images. A comparison with respect to two baseline methods is also presented.
Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grain semantic units in both sides of vision and language. For the training, we propose multi-scale matching losses from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا