ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Visual Search with Binary Distributed Graph at Alibaba

243   0   0.0 ( 0 )
 نشر من قبل Kang Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph-based approximate nearest neighbor search has attracted more and more attentions due to its online search advantages. Numbers of methods studying the enhancement of speed and recall have been put forward. However, few of them focus on the efficiency and scale of offline graph-construction. For a deployed visual search system with several billions of online images in total, building a billion-scale offline graph in hours is essential, which is almost unachievable by most existing methods. In this paper, we propose a novel algorithm called Binary Distributed Graph to solve this problem. Specifically, we combine binary codes with graph structure to speedup online and offline procedures, and achieve comparable performance with the ones in real-value based scenarios by recalling more binary candidates. Furthermore, the graph-construction is optimized to completely distributed implementation, which significantly accelerates the offline process and gets rid of the limitation of memory and disk within a single machine. Experimental comparisons on Alibaba Commodity Data Set (more than three billion images) show that the proposed method outperforms the state-of-the-art with respect to the online/offline trade-off.



قيم البحث

اقرأ أيضاً

136 - Yanhao Zhang , Pan Pan , Yun Zheng 2021
This paper introduces the large scale visual search algorithm and system infrastructure at Alibaba. The following challenges are discussed under the E-commercial circumstance at Alibaba (a) how to handle heterogeneous image data and bridge the gap be tween real-shot images from user query and the online images. (b) how to deal with large scale indexing for massive updating data. (c) how to train deep models for effective feature representation without huge human annotations. (d) how to improve the user engagement by considering the quality of the content. We take advantage of large image collection of Alibaba and state-of-the-art deep learning techniques to perform visual search at scale. We present solutions and implementation details to overcome those problems and also share our learnings from building such a large scale commercial visual search engine. Specifically, model and search-based fusion approach is introduced to effectively predict categories. Also, we propose a deep CNN model for joint detection and feature learning by mining user click behavior. The binary index engine is designed to scale up indexing without compromising recall and precision. Finally, we apply all the stages into an end-to-end system architecture, which can simultaneously achieve highly efficient and scalable performance adapting to real-shot images. Extensive experiments demonstrate the advancement of each module in our system. We hope visual search at Alibaba becomes more widely incorporated into todays commercial applications.
In the last decades, extreme classification has become an essential topic for deep learning. It has achieved great success in many areas, especially in computer vision and natural language processing (NLP). However, it is very challenging to train a deep model with millions of classes due to the memory and computation explosion in the last output layer. In this paper, we propose a large-scale training system to address these challenges. First, we build a hybrid parallel training framework to make the training process feasible. Second, we propose a novel softmax variation named KNN softmax, which reduces both the GPU memory consumption and computation costs and improves the throughput of training. Then, to eliminate the communication overhead, we propose a new overlapping pipeline and a gradient sparsification method. Furthermore, we design a fast continuous convergence strategy to reduce total training iterations by adaptively adjusting learning rate and updating model parameters. With the help of all the proposed methods, we gain 3.9$times$ throughput of our training system and reduce almost 60% of training iterations. The experimental results show that using an in-house 256 GPUs cluster, we could train a classifier of 100 million classes on Alibaba Retail Product Dataset in about five days while achieving a comparable accuracy with the naive softmax training process.
68 - Jin Li , Jie Liu , Shangzhou Li 2021
Matching module plays a critical role in display advertising systems. Without query from user, it is challenging for system to match user traffic and ads suitably. System packs up a group of users with common properties such as the same gender or sim ilar shopping interests into a crowd. Here term crowd can be viewed as a tag over users. Then advertisers bid for different crowds and deliver their ads to those targeted users. Matching module in most industrial display advertising systems follows a two-stage paradigm. When receiving a user request, matching system (i) finds the crowds that the user belongs to; (ii) retrieves all ads that have targeted those crowds. However, in applications such as display advertising at Alibaba, with very large volumes of crowds and ads, both stages of matching have to truncate the long-tailed parts for online serving, under limited latency. Thats to say, not all ads have the chance to participate in online matching. This results in sub-optimal result for both advertising performance and platform revenue. In this paper, we study the truncation problem and propose a Truncation Free Matching System (TFMS). The basic idea is to decouple the matching computation from the online pipeline. Instead of executing the two-stage matching when user visits, TFMS utilizes a near-line truncation-free matching to pre-calculate and store those top valuable ads for each user. Then the online pipeline just needs to fetch the pre-stored ads as matching results. In this way, we can jump out of online systems latency and computation cost limitations, and leverage flexible computation resource to finish the user-ad matching. TFMS has been deployed in our productive system since 2019, bringing (i) more than 50% improvement of impressions for advertisers who encountered truncation before, (ii) 9.4% Revenue Per Mile gain, which is significant enough for the business.
Conceptual graphs, which is a particular type of Knowledge Graphs, play an essential role in semantic search. Prior conceptual graph construction approaches typically extract high-frequent, coarse-grained, and time-invariant concepts from formal text s. In real applications, however, it is necessary to extract less-frequent, fine-grained, and time-varying conceptual knowledge and build taxonomy in an evolving manner. In this paper, we introduce an approach to implementing and deploying the conceptual graph at Alibaba. Specifically, We propose a framework called AliCG which is capable of a) extracting fine-grained concepts by a novel bootstrapping with alignment consensus approach, b) mining long-tail concepts with a novel low-resource phrase mining approach, c) updating the graph dynamically via a concept distribution estimation method based on implicit and explicit user behaviors. We have deployed the framework at Alibaba UC Browser. Extensive offline evaluation as well as online A/B testing demonstrate the efficacy of our approach.
Building a recommendation system that serves billions of users on daily basis is a challenging problem, as the system needs to make astronomical number of predictions per second based on real-time user behaviors with O(1) time complexity. Such kind o f large scale recommendation systems usually rely heavily on pre-built index of products to speedup the recommendation service so that online user waiting time is un-noticeable. One important indexing structure is the product-product index, where one can retrieval a list of ranked products given a seed product. The index can be viewed as a weighted product-product graph. In this paper, we present our novel technologies to efficiently build such kind of indexed product graphs. In particular, we propose the Swing algorithm to capture the substitute relationships between products, which can utilize the substructures of user-item click bi-partitive graph. Then we propose the Surprise algorithm for the modeling of complementary product relationships, which utilizes product category information and solves the sparsity problem of user co-purchasing graph via clustering technique. Base on these two approaches, we can build the basis product graph for recommendation in Taobao. The approaches are evaluated comprehensively with both offline and online experiments, and the results demonstrate the effectiveness and efficiency of the work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا