ﻻ يوجد ملخص باللغة العربية
Extracting robust feature representation is one of the key challenges in object re-identification (ReID). Although convolution neural network (CNN)-based methods have achieved great success, they only process one local neighborhood at a time and suffer from information loss on details caused by convolution and downsampling operators (e.g. pooling and strided convolution). To overcome these limitations, we propose a pure transformer-based object ReID framework named TransReID. Specifically, we first encode an image as a sequence of patches and build a transformer-based strong baseline with a few critical improvements, which achieves competitive results on several ReID benchmarks with CNN-based methods. To further enhance the robust feature learning in the context of transformers, two novel modules are carefully designed. (i) The jigsaw patch module (JPM) is proposed to rearrange the patch embeddings via shift and patch shuffle operations which generates robust features with improved discrimination ability and more diversified coverage. (ii) The side information embeddings (SIE) is introduced to mitigate feature bias towards camera/view variations by plugging in learnable embeddings to incorporate these non-visual clues. To the best of our knowledge, this is the first work to adopt a pure transformer for ReID research. Experimental results of TransReID are superior promising, which achieve state-of-the-art performance on both person and vehicle ReID benchmarks.
Recently, the Transformer module has been transplanted from natural language processing to computer vision. This paper applies the Transformer to video-based person re-identification, where the key issue is to extract the discriminative information f
Transformers are more and more popular in computer vision, which treat an image as a sequence of patches and learn robust global features from the sequence. However, a suitable vehicle re-identification method should consider both robust global featu
In person re-identification, extracting part-level features from person images has been verified to be crucial. Most of existing CNN-based methods only locate the human parts coarsely, or rely on pre-trained human parsing models and fail in locating
Short video applications like TikTok and Kwai have been a great hit recently. In order to meet the increasing demands and take full advantage of visual information in short videos, objects in each short video need to be located and analyzed as an ups
Person re-identification (re-ID) under various occlusions has been a long-standing challenge as person images with different types of occlusions often suffer from misalignment in image matching and ranking. Most existing methods tackle this challenge