ﻻ يوجد ملخص باللغة العربية
A two-dimensional fluid model is used to investigate the electron heating dynamics and the production of neutral species in a capacitively coupled radio-frequency micro atmospheric pressure helium plasma jet -- specifically the COST jet -- with a small oxygen admixture. Electron heating mode transitions are found to be induced by varying the driving voltage amplitude and the O$_2$ concentration numerically and experimentally. The helium metastable density, and the charged species densities are highly relevant to the electron heating dynamics. By analyzing the creation and destruction mechanisms of the negative ions, we find that the generation of negative ions strongly depends on the O$_2$ concentration. The increase of the electronegativity with the increasing O$_2$ concentration leads to an enhancement of the bulk drift electric field. The distributions of the different neutral species densities along the direction of the gas flow inside the jet, as well as in the effluent differ a lot due to the relevant chemical reaction rates and the effect of the gas flow. The simulated results show that a fluid model can be an effective tool for qualitative investigations of micro atmospheric pressure plasma jets.
Nanoparticles grown in a plasma are used to visualize the process of film deposition in a pulsed radio-frequency (rf) atmospheric pressure glow discharge. Modulating the plasma makes it possible to successfully prepare porous TiO2 films. We study the
A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasm
The dynamic process of a laser or particle beam propagating from vacuum into underdense plasma has been investigated theoretically. Our theoretical model combines a Lagrangian fluid model with the classic quasistatic wakefield theory. It is found tha
The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum-solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micromet
We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleratio