ترغب بنشر مسار تعليمي؟ اضغط هنا

FastAD: Expression Template-Based C++ Library for Fast and Memory-Efficient Automatic Differentiation

76   0   0.0 ( 0 )
 نشر من قبل James Yang
 تاريخ النشر 2021
والبحث باللغة English
 تأليف James Yang




اسأل ChatGPT حول البحث

Automatic differentiation is a set of techniques to efficiently and accurately compute the derivative of a function represented by a computer program. Existing C++ libraries for automatic differentiation (e.g. Adept, Stan Math Library), however, exhibit large memory consumptions and runtime performance issues. This paper introduces FastAD, a new C++ template library for automatic differentiation, that overcomes all of these challenges in existing libraries by using vectorization, simpler memory management using a fully expression-template-based design, and other compile-time optimizations to remove some run-time overhead. Benchmarks show that FastAD performs 2-10 times faster than Adept and 2-19 times faster than Stan across various test cases including a few real-world examples.



قيم البحث

اقرأ أيضاً

Derivatives play a critical role in computational statistics, examples being Bayesian inference using Hamiltonian Monte Carlo sampling and the training of neural networks. Automatic differentiation is a powerful tool to automate the calculation of de rivatives and is preferable to more traditional methods, especially when differentiating complex algorithms and mathematical functions. The implementation of automatic differentiation however requires some care to insure efficiency. Modern differentiation packages deploy a broad range of computational techniques to improve applicability, run time, and memory management. Among these techniques are operation overloading, region based memory, and expression templates. There also exist several mathematical techniques which can yield high performance gains when applied to complex algorithms. For example, semi-analytical derivatives can reduce by orders of magnitude the runtime required to numerically solve and differentiate an algebraic equation. Open problems include the extension of current packages to provide more specialized routines, and efficient methods to perform higher-order differentiation.
In this paper we introduce DiffSharp, an automatic differentiation (AD) library designed with machine learning in mind. AD is a family of techniques that evaluate derivatives at machine precision with only a small constant factor of overhead, by syst ematically applying the chain rule of calculus at the elementary operator level. DiffSharp aims to make an extensive array of AD techniques available, in convenient form, to the machine learning community. These including arbitrary nesting of forward/reverse AD operations, AD with linear algebra primitives, and a functional API that emphasizes the use of higher-order functions and composition. The library exposes this functionality through an API that provides gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products. Bearing the performance requirements of the latest machine learning techniques in mind, the underlying computations are run through a high-performance BLAS/LAPACK backend, using OpenBLAS by default. GPU support is currently being implemented.
Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, Red-Black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism.
In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques to evaluate the derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.), elementary functions (exp, log, sin, cos, etc.) and control flow statements. AD takes source code of a function as input and produces source code of the derived function. By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program. This paper presents AD techniques available in ROOT, supported by Cling, to produce derivatives of arbitrary C/C++ functions through implementing source code transformation and employing the chain rule of differential calculus in both forward mode and reverse mode. We explain its current integration for gradient computation in TFormula. We demonstrate the correctness and performance improvements in ROOTs fitting algorithms.
Automatic and adaptive approximation, optimization, or integration of functions in a cone with guarantee of accuracy is a relatively new paradigm. Our purpose is to create an open-source MATLAB package, Guaranteed Automatic Integration Library (GAIL) , following the philosophy of reproducible research and sustainable practices of robust scientific software development. For our conviction that true scholarship in computational sciences are characterized by reliable reproducibility, we employ the best practices in mathematical research and software engineering known to us and available in MATLAB. This document describes the key features of functions in GAIL, which includes one-dimensional function approximation and minimization using linear splines, one-dimensional numerical integration using trapezoidal rule, and last but not least, mean estimation and multidimensional integration by Monte Carlo methods or Quasi Monte Carlo methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا