ترغب بنشر مسار تعليمي؟ اضغط هنا

Halo shapes constrained from a pure sample of central galaxies in KiDS-1000

166   0   0.0 ( 0 )
 نشر من قبل Christos Georgiou Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of $f_h$, the ratio of the aligned components of the projected halo and galaxy ellipticities, for a sample of central galaxies using weak gravitational lensing data from the Kilo-Degree Survey (KiDS). Using a lens galaxy shape estimation that is more sensitive to outer galaxy regions, we find $f_{rm h}=0.50pm0.20$ for our full sample and $f_{rm h}=0.55pm0.19$ for an intrinsically red (and therefore higher stellar-mass) sub-sample, rejecting the hypothesis of round halos and/or galaxies being un-aligned with their parent halo at $2.5sigma$ and $2.9sigma$, respectively. We quantify the 93.4% purity of our central galaxy sample using numerical simulations and overlapping spectroscopy from the Galaxy and Mass Assembly survey. This purity ensures that the interpretation of our measurements is not complicated by the presence of a significant fraction of satellite galaxies. Restricting our central galaxy ellipticity measurement to the inner isophotes, we find $f_{rm h}=0.34pm0.17$ for our red sub-sample, suggesting that the outer galaxy regions are more aligned with their dark matter halos compared to the inner regions. Our results are in agreement with previous studies and suggest that lower mass halos are rounder and/or less aligned with their host galaxy than samples of more massive galaxies, studied in galaxy groups and clusters.



قيم البحث

اقرأ أيضاً

We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central ga laxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.
The three-dimensional (3-D) shape of a galaxy inevitably is tied to how it has formed and evolved and to its dark matter halo. Local extremely metal-poor galaxies (XMPs; defined as having an average gas-phase metallicity < 0.1 solar) are important ob jects for understanding galaxy evolution largely because they appear to be caught in the act of accreting gas from the cosmic web, and their 3-D shape may reflect this. Here we report on the 3-D shape of XMPs as inferred from their observed projected minor-to-major axial ratios using a hierarchical Bayesian inference model, which determines the likely shape and orientation of each galaxy while simultaneously inferring the average shape and dispersion. We selected a sample of 149 XMPs and divided it into three sub-samples according to physical size and found that (1) the stellar component of XMPs of all sizes tends to be triaxial, with an intermediate axis approx 0.7 times the longest axis and that (2) smaller XMPs tend to be relatively thicker, with the shortest axis going from approx 0.15 times the longest axis for the large galaxies to approx 0.4 for the small galaxies. We provide the inferred 3-D shape and inclination of the individual XMPs in electronic format. We show that our results for the intermediate axis are not clouded by a selection effect against face-on XMPs. We discuss how an intermediate axis significantly smaller than the longest axis may be produced by several mechanisms, including lopsided gas accretion, non-axisymmetric star formation, or coupling with an elongated dark matter halo. Large relative thickness may reflect slow rotation, stellar feedback, or recent gas accretion.
We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a nearly volume-limited sample of luminous red galaxies selected from the fourth public data release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes o f the galaxies, we used two complementary algorithms, finding consistent IA measurements for the overlapping galaxy sample. The global significance of IA detection across our two independent luminous red galaxy samples, with our favoured method of shape estimation, is $sim10.7sigma$. We find no significant dependence with redshift of the IA signal in the range $0.2<z<0.8$, nor a dependence with luminosity below $L_rlesssim 2.9 times 10^{10} h^{-2} L_{r,odot}$. Above this luminosity, however, we find that the IA signal increases as a power law, although our results are also compatible with linear growth within the current uncertainties. This behaviour motivates the use of a broken power law model when accounting for the luminosity dependence of IA contamination in cosmic shear studies.
We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter with the observed gravitational acceleration, using weak lensing measurements from the fourth data release of the Kilo-Degree Survey. These measurements extend the radial acceleration relation (RAR) by 2 decades into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: MOND and Verlindes emergent gravity. We find that the measured RAR agrees well with the MG predictions. In addition, we find a difference of at least $6sigma$ between the RARs of early- and late-type galaxies (split by S{e}rsic index and $u-r$ colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour. The difference might be explained if only the early-type galaxies have significant ($M_{gas} approx M_*$) circumgalactic gaseous haloes. The observed behaviour is also expected in $Lambda$CDM models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a $Lambda$CDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys will be able to further distinguish between MG and $Lambda$CDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.
While the selection of strongly lensed galaxies with 500{mu}m flux density S_500>100 mJy has proven to be rather straightforward (Negrello et al. 2010), for many applications it is important to analyze samples larger than the ones obtained when confi ning ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate strongly lensed galaxies, reaching a surface density of ~1.5-2 deg^-2, i.e. a factor of about 4 to 6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to ~1000 candidate strongly lensed galaxies (with amplifications mu>2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field (~14.4 deg^2) we find 31 candidate strongly lensed galaxies, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a ~72% purity of the sample. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to substantially higher redshifts than found in the other surveys. The counts of candidate strongly lensed galaxies are also in good agreement with model predictions (Lapi et al. 2011). Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate strongly lensed galaxies with an efficiency close to 50%; a slightly lower surface density (~1.45 deg^-2) can be reached with a ~70% efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا