ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipative stabilization of squeezing beyond 3 dB in a microwave mode

167   0   0.0 ( 0 )
 نشر من قبل R\\'emy Dassonneville
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While a propagating state of light can be generated with arbitrary squeezing by pumping a parametric resonator, the intra-resonator state is limited to 3 dB of squeezing. Here, we implement a reservoir engineering method to surpass this limit using superconducting circuits. Two-tone pumping of a three-wave-mixing element implements an effective coupling to a squeezed bath which stabilizes a squeezed state inside the resonator. Using an ancillary superconducting qubit as a probe allows us to perform a direct Wigner tomography of the intra-resonator state. The raw measurement provides a lower bound on the squeezing at about $6.7 pm 0.2$ dB below the zero-point level. Further, we show how to correct for resonator evolution during the Wigner tomography and obtain a squeezing as high as $8.2 pm 0.8$ dB. Moreover, this level of squeezing is achieved with a purity of $-0.4 pm 0.4$ dB.



قيم البحث

اقرأ أيضاً

We show that any optical dissipative structure supported by degenerate optical parametric oscillators contains a special transverse mode that is free from quantum fluctuations when measured in a balanced homodyne detection experiment. The phenomenon is not critical as it is independent of the system parameters and, in particular, of the existence of bifurcations. This result is a consequence of the spatial symmetry breaking introduced by the dissipative structure. Effects that could degrade the squeezing level are considered.
We study a parametrically-driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasi ble. We consider the adiabatic limit in which the cavity mode is slaved to the nanoresonator mode. By driving the cavity on its red-detuned sideband, the squeezing can be coupled into the microwave field at the cavity resonance. The red-detuned sideband drive is also compatible with the goal of ground state cooling. Squeezing of the output microwave field may be inferred using a technique similar to that used to infer squeezing of the field produced by a Josephson parametric amplifier, and subsequently, squeezing of the nanoresonator motion may be inferred. We have calculated the output field microwave squeezing spectra and related this to squeezing of the nanoresonator motion, both at zero and finite temperature. Driving the cavity on the blue-detuned sideband, and on both the blue and red sidebands, have also been considered within the same formalism.
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light.
We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities [Phys. Rev. A $textbf{73}$, 043803(2006)], we employ a superconducting qubit cou pled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator-qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.
317 - Jie Li , Yi-Pu Wang , J. Q. You 2021
Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive intera ction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. The scheme can be realized within the reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا