ﻻ يوجد ملخص باللغة العربية
We use a fully quantum mechanical approach to demonstrate control of plasmonic excitations in prototype models of topological insulators by molecule-scale perturbations. Strongly localized surface plasmons are present in the host systems, arising from the topologically non-trivial single-particle edge states. A numerical evaluation of the RPA equations for the perturbed systems reveals how the positions and the internal electronic structure of the added molecules affect the degeneracy of the locally confined collective excitations, i.e., shifting the plasmonic energies of the host system and changing their spatial charge density profile. In particular, we identify conditions under which significant charge transfer from the host system to the added molecules occurs. Furthermore, the induced field energy density in the perturbed topological systems due to external electric fields is determined.
Collective excitations in topologically non-trivial systems have attracted considerable attention in recent years. Here we study plasmons in the Su-Schrieffer-Heeger model whose low-energy electronic band is only partially filled, such that the syste
We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symme
Topological insulators (TIs) host unusual surface states with Dirac dispersion and helical spin texture and hold high potentials for novel applications in spintronics and quantum computing. Control of the chemical potential in these materials is chal
We show that the bulk winding number characterizing one-dimensional topological insulators with chiral symmetry can be detected from the displacement of a single particle, observed via losses. Losses represent the effect of repeated weak measurements
We propose a two-dimensional plasmonic platform - periodically patterned monolayer graphene - which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-