ﻻ يوجد ملخص باللغة العربية
It is demonstrated in this paper that the propagation of the electric wave field in a heterogeneous medium in 3D can sometimes be governed well by a single PDE, which is derived from the Maxwells equations. The corresponding component of the electric field dominates two other components. This justifies some past results of the second author with coauthors about numerical solutions of coefficient inverse problems with experimental electromagnetic data. In addition, since it is simpler to work in applications with a single PDE rather than with the complete Maxwells system, then the result of this paper might be useful to researchers working on applied issues of the propagation of electromagnetic waves in inhomogeneous media.
In the watt balance experiments, separate measurements of the magnetic and electromotive forces in a coil in a magnetic field enable a virtual comparison between mechanical and electric powers to be carried out, which lead to an accurate measurement
YES! We introduce a variable power Maxwell nonlinear electrodynamics theory which can remove the singularity of electric field of point-like charges at their locations. One of the main problems of Maxwells electromagnetic field theory is related to t
We are interested in the modeling of wave propagation in poroelastic media. We consider the biphasic Biots model in an infinite bilayered medium with a plane interface. We adopt the Cagniard-De Hoops technique. This report is devoted to the calculation of analytical solution in three dimension.
In this paper, phase correction and amplitude compensation are introduced to a previously developed mixed domain method (MDM), which is only accurate for modeling wave propagation in weakly heterogeneous media. Multiple reflections are also incorpora
The propagation of free electromagnetic radiation in the field of a plane gravitational wave is investigated. A solution is found one order of approximation beyond the limit of geometrical optics in both transverse--traceless (TT) gauge and Fermi Nor