ﻻ يوجد ملخص باللغة العربية
We investigate the consequences of elliptic leading singularities for the unitarity-based representations of two-loop amplitudes in planar, maximally supersymmetric Yang-Mills theory. We show that diagonalizing with respect to these leading singularities ensures that the integrand basis is term-wise pure (suitably generalized, to the elliptic multiple polylogarithms, as necessary). We also investigate an alternative strategy based on diagonalizing a basis of integrands on differential forms; this strategy, while neither term-wise Yangian-invariant nor pure, offers several advantages in terms of complexity.
We extend the applications of prescriptive unitarity beyond the planar limit to provide local, polylogarithmic, integrand-level representations of six-particle MHV scattering amplitudes in both maximally supersymmetric Yang-Mills theory and gravity.
We derive closed formulae for the first examples of non-algebraic, elliptic `leading singularities in planar, maximally supersymmetric Yang-Mills theory and show that they are Yangian-invariant.
The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In this paper we evaluate the unknown integral
This talk reviewed some classic results and recent progress in the resummation of leading and nonleading enhancements in QCD cross sections and of poles in dimensionally-regularized hard-scattering amplitudes.
We study a Dirichlet problem for an elliptic equation defined by a degenerate coercive operator and a singular right-hand side. We will show that the right-hand side has some regularizing effects on the solutions, even if it is singular.