ﻻ يوجد ملخص باللغة العربية
In adversarial training (AT), the main focus has been the objective and optimizer while the model has been less studied, so that the models being used are still those classic ones in standard training (ST). Classic network architectures (NAs) are generally worse than searched NAs in ST, which should be the same in AT. In this paper, we argue that NA and AT cannot be handled independently, since given a dataset, the optimal NA in ST would be no longer optimal in AT. That being said, AT is time-consuming itself; if we directly search NAs in AT over large search spaces, the computation will be practically infeasible. Thus, we propose a diverse-structured network (DS-Net), to significantly reduce the size of the search space: instead of low-level operations, we only consider predefined atomic blocks, where an atomic block is a time-tested building block like the residual block. There are only a few atomic blocks and thus we can weight all atomic blocks rather than find the best one in a searched block of DS-Net, which is an essential trade-off between exploring diverse structures and exploiting the best structures. Empirical results demonstrate the advantages of DS-Net, i.e., weighting the atomic blocks.
Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constrain
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos
A convolutional neural network strongly robust to adversarial perturbations at reasonable computational and performance cost has not yet been demonstrated. The primate visual ventral stream seems to be robust to small perturbations in visual stimuli
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It i