ﻻ يوجد ملخص باللغة العربية
In this work, we present a generalized and robust facial manipulation detection method based on color distribution analysis of the vertical region of edge in a manipulated image. Most of the contemporary facial manipulation method involves pixel correction procedures for reducing awkwardness of pixel value differences along the facial boundary in a synthesized image. For this procedure, there are distinctive differences in the facial boundary between face manipulated image and unforged natural image. Also, in the forged image, there should be distinctive and unnatural features in the gap distribution between facial boundary and background edge region because it tends to damage the natural effect of lighting. We design the neural network for detecting face-manipulated image with these distinctive features in facial boundary and background edge. Our extensive experiments show that our method outperforms other existing face manipulation detection methods on detecting synthesized face image in various datasets regardless of whether it has participated in training.
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized
Dipole and higher moments are physical quantities used to describe a charge distribution. In analogy with electromagnetism, it is possible to define the dipole moments for a gray-scale image, according to the single aspect of a gray-tone map. In this
Facial expression synthesis or editing has recently received increasing attention in the field of affective computing and facial expression modeling. However, most existing facial expression synthesis works are limited in paired training data, low re
In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images
Facial expression manipulation aims at editing facial expression with a given condition. Previous methods edit an input image under the guidance of a discrete emotion label or absolute condition (e.g., facial action units) to possess the desired expr