ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural representation and generation for RNA secondary structures

86   0   0.0 ( 0 )
 نشر من قبل Zichao Yan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Our work is concerned with the generation and targeted design of RNA, a type of genetic macromolecule that can adopt complex structures which influence their cellular activities and functions. The design of large scale and complex biological structures spurs dedicated graph-based deep generative modeling techniques, which represents a key but underappreciated aspect of computational drug discovery. In this work, we investigate the principles behind representing and generating different RNA structural modalities, and propose a flexible framework to jointly embed and generate these molecular structures along with their sequence in a meaningful latent space. Equipped with a deep understanding of RNA molecular structures, our most sophisticated encoding and decoding methods operate on the molecular graph as well as the junction tree hierarchy, integrating strong inductive bias about RNA structural regularity and folding mechanism such that high structural validity, stability and diversity of generated RNAs are achieved. Also, we seek to adequately organize the latent space of RNA molecular embeddings with regard to the interaction with proteins, and targeted optimization is used to navigate in this latent space to search for desired novel RNA molecules.



قيم البحث

اقرأ أيضاً

113 - Qi Zhao , Zheng Zhao , Xiaoya Fan 2020
Secondary structure plays an important role in determining the function of non-coding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary stru cture. Unfortunately, even though new methods have been proposed over the past 40 years, the performance of computational prediction methods has stagnated in the last decade. Recently, with the increasing availability of RNA structure data, new methods based on machine-learning technologies, especially deep learning, have alleviated the issue. In this review, we provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies and a tabularized summary of the most important methods in this field. The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.
For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using a pseudo-energy framework developed for 2-OH acylation (S HAPE) mapping. On six non-coding RNAs with crystallographic models, DMS- guided modeling achieves overall false negative and false discovery rates of 9.5% and 11.6%, comparable or better than SHAPE-guided modeling; and non-parametric bootstrapping provides straightforward confidence estimates. Integrating DMS/SHAPE data and including CMCT reactivities give small additional improvements. These results establish DMS mapping - an already routine technique - as a quantitative tool for unbiased RNA structure modeling.
56 - Sheng Hui , Lei-Han Tang 2006
RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The fr ee energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.
We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number, whose value qu antifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structures and have zero genus, whereas non planar diagrams correspond to pseudoknotted structures and have higher genus. We analyze real RNA structures from the databases wwPDB and Pseudobase, and classify them according to their topological genus. We compare the results of our statistical survey with existing theoretical and numerical models. We also discuss possible applications of this classification and show how it can be used for identifying new RNA structural motifs.
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا