ﻻ يوجد ملخص باللغة العربية
The dynamics of the Broad Line Region (BLR) in Active galaxies is an open question, direct observational constraints suggest a predominantly Keplerian motion, with possible traces of inflow or outflow. In this paper we study in detail the physically motivated BLR model of (Czerny & Hryniewicz, 2011) based on the radiation pressure acting on dust at the surface layers of accretion disk (AD). We consider here a non-hydrodynamical approach to the dynamics of the dusty cloud under the influence of radiation coming from the entire AD. We use here the realistic description of the dust opacity, and we introduce two simple geometrical models of the local shielding of the dusty cloud. We show that the radiation pressure acting on dusty clouds is strong enough to lead to dynamical outflow from the AD surface, so the BLR has a dynamical character of (mostly failed) outflow. The dynamics strongly depend on the Eddington ratio of the source. Large Eddington ratio sources show a complex velocity field and large vertical velocities with respect to the AD surface, while for lower Eddington ratio sources vertical velocities are small and most of the emission originates close to the AD surface. Cloud dynamics thus determines the 3-D geometry of the BLR.
The effective size of Broad Line Region (BLR), so-called the BLR radius, in galaxies with active galactic nuclei (AGN) scales with the source luminosity. Therefore by determining this location either observationally through reverberation mapping or t
We introduce a classification scheme of the post-merger dynamics and gravitational-wave emission in binary neutron star mergers, after identifying a new mechanism by which a secondary peak in the gravitational-wave spectrum is produced. It is caused
In Failed Radiatively Accelerated Dusty Outflow (FRADO) model which provides the source of material above the accretion disk (AD) as an option to explain the formation mechanism of Broad Line Region (BLR) in AGNs, the BLR inner radius ($rm{BLR}_{in}$
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad and narrow line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of
We have undertaken a multi-band observing program aimed at obtaining a complete census of winds in a sample of WISE/SDSS selected hyper-luminous (WISSH) QSOs at z~2-4. We have analyzed the rest-frame optical (LBT/LUCI and VLT/SINFONI) and UV (SDSS) s