ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread II. Effects of collisionality

397   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. The purpose of this study is to deepen our understanding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account neutral viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper II, the sensitivity of the RTI dynamics to collisional effects for different magnetic field configurations supporting the prominence thread is explored. This is done by artificially varying, or eliminating, effects of both elastic and inelastic collisions by modifying the model equations. We find that ionization and recombination reactions between ionized and neutral fluids, if in equilibrium prior to the onset of the instability, do not substantially impact the development of the primary RTI. However, such reactions can impact development of secondary structures during mixing of the cold prominence and hotter surrounding coronal material. We find that collisionality within and between ionized and neutral particle populations play an important role in both linear and non-linear development of RTI, with ion-neutral collision frequency as the primary determining factor in development or damping of small scale structures. We also observe that degree and signatures of flow decoupling between ion and neutral fluids can depend both on the inter-particle collisionality and the magnetic field configuration of the prominence thread.



قيم البحث

اقرأ أيضاً

Solar prominences are formed by partially ionized plasma with inter-particle collision frequencies generally warranting magnetohydrodynamic treatment. In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in th e parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. We perform 2.5D two-fluid (charges - neutrals) simulations of the Rayleigh-Taylor instability (RTI) at a smoothly changing interface between a solar prominence thread and the corona. The purpose of this study is to deepen our understanding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper I, the sensitivity of the RTI dynamics to the prominence equilibrium configuration, including the impact of the magnetic field strength and shear supporting the prominence thread, and the amount of prominence mass-loading is explored. We show that, at small scales, a realistically smooth prominence-corona interface leads to qualitatively different linear RTI evolution than that expected for a discontinuous interface, while magnetic field shear has the stabilizing effect of reducing the growth rate or eliminating the instability. In the non-linear phase, we observe that in the presence of field shear the development of the instability leads to formation of coherent and interacting 2.5D magnetic structures, which, in turn, can lead to substantial plasma flow across magnetic field lines and associated decoupling of the fluid velocities of charges and neutrals.
96 - I. Ballai , B. Pinter , R. Oliver 2017
We investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and wavelength of waves propagating in the slab. To highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the evolution of the instability. Results are obtained in the limit of weak dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid approximations. We show that dissipative instabilities appear for flow speeds that are less than the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time. The present study improves our understanding of stability of solar prominences and the role of partial ionisation in destabilising the plasma. We show the necessity of two-fluid approximation when discussing the nature of instabilities: waves in a single fluid approximation show a great deal of stability.
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D C artesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20-25 km s$^{-1}$. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3-4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with format ion temperatures between log(T)=4.7-6.3, as well as their integrated intensities, are given. The line profiles are discussed. We pay special attention to the He II line which is blended with coronal lines. Our analysis confirms that depression in EUV lines can be interpreted by two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He II line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking on the coronal lines blended with the He II line. We estimate the contribution of the He II 256.32 line in the He II raster image to vary between ~44% and 70% of the rasters total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He II line are consistent with theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate for the central temperature of 8700 K, central pressure of 0.33 dyn/cm^2, and column mass of 2.5 10^{-4} g/cm^2. The corresponding theoretical hydrogen column density (10^{20} cm^{-2}) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 {AA}. The non-LTE calculations indicate that the He II 256.32 {AA} line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation.
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor Instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensio ns. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا