ﻻ يوجد ملخص باللغة العربية
The application of Bayesian techniques to astronomical data is generally non-trivial because the fitting parameters can be strongly degenerated and the formal uncertainties are themselves uncertain. An example is provided by the contradictory claims over the presence or absence of a universal acceleration scale (g$_dagger$) in galaxies based on Bayesian fits to rotation curves. To illustrate the situation, we present an analysis in which the Newtonian gravitational constant $G_N$ is allowed to vary from galaxy to galaxy when fitting rotation curves from the SPARC database, in analogy to $g_{dagger}$ in the recently debated Bayesian analyses. When imposing flat priors on $G_N$, we obtain a wide distribution of $G_N$ which, taken at face value, would rule out $G_N$ as a universal constant with high statistical confidence. However, imposing an empirically motivated log-normal prior returns a virtually constant $G_N$ with no sacrifice in fit quality. This implies that the inference of a variable $G_N$ (or g$_{dagger}$) is the result of the combined effect of parameter degeneracies and unavoidable uncertainties in the error model. When these effects are taken into account, the SPARC data are consistent with a constant $G_{rm N}$ (and constant $g_dagger$).
SubHalo Abundance Matching (SHAM) assumes that one (sub)halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub)halo such as its luminosity or stellar mass. This assumption implies tha
We present ProFit, a new code for Bayesian two-dimensional photometric galaxy profile modelling. ProFit consists of a low-level C++ library (libprofit), accessible via a command-line interface and documented API, along with high-level R (ProFit) and
CIGALE is a powerful multiwavelength spectral energy distribution (SED) fitting code for extragalactic studies. However, the current version of CIGALE is not able to fit X-ray data, which often provide unique insights into AGN intrinsic power. We dev
We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in
The phenomenology of modified Newtonian dynamics (MOND) on galaxy scales may point to more fundamental theories of either modified gravity (MG) or modified inertia (MI). In this paper, we test the applicability of the global deep-MOND parameter $Q$ w