ﻻ يوجد ملخص باللغة العربية
The plethora of photometric data collected by the Kepler space telescope has promoted the detection of tens of thousands of stellar rotation periods. However, these periods are not found to an equal extent among different spectral types. Interestingly, early G-type stars with near-solar rotation periods are strongly underrepresented among those stars with known rotation periods. In this study we investigate whether the small number of such stars can be explained by difficulties in the period determination from photometric time series. For that purpose, we generate model light curves of early G-type stars with solar rotation periods for different inclination angles, metallicities and (magnitude-dependent) noise levels. We find that the detectability is determined by the predominant type of activity (i.e. spot or faculae domination) on the surface, which defines the degree of irregularity of the light curve, and further depends on the level of photometric noise. These two effects significantly complicate the period detection and explain the lack of solar-like stars with known near-solar rotation periods. We conclude that the rotation periods of the majority of solar-like stars with near-solar rotation periods remain undetected to date. Finally, we promote the use of new techniques to recover more periods of near-solar rotators.
Several recent studies indicate that bulges are more complex than merely structureless relaxed stellar systems. We study the HST images of a sample of 130 nearby early type (S0-Sab) disc galaxies and detect pure structureless bulges with the Sersic i
We have calculated stationary models for accretion disks around super-massive black holes in galactic nuclei. Our models show that below a critical mass flow rate of ~3 10**-3 M_Edd advection will dominate the energy budget while above that rate all
Our extremely deep survey for extragalactic HI (HIDEEP) finds no intergalactic gas clouds, and no galaxies with HI at inferred global column-densities below 10^20 cm^-2 when we could have detected such objects down to a completeness limit of 4 x 10^1
We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. We identify the main
Approximately 70 percent of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion