ترغب بنشر مسار تعليمي؟ اضغط هنا

Holomorphic representation of minimal surfaces in simply isotropic space

54   0   0.0 ( 0 )
 نشر من قبل Luiz C. B. da Silva Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that minimal surfaces in Euclidean space can be represented in terms of holomorphic functions. For example, we have the well-known Weierstrass representation, where part of the holomorphic data is chosen to be the stereographic projection of the normal of the corresponding surface, and also the Bjorling representation, where it is prescribed a curve on the surface and the unit normal on this curve. In this work, we are interested in the holomorphic representation of minimal surfaces in simply isotropic space, a three-dimensional space equipped with a rank 2 metric of index zero. Since the isotropic metric is degenerate, a surface normal cannot be unequivocally defined based on metric properties only, which leads to distinct definitions of an isotropic normal. As a consequence, this may also lead to distinct forms of a Weierstrass and of a Bjorling representation. Here, we show how to represent simply isotropic minimal surfaces in accordance with the choice of an isotropic surface normal.



قيم البحث

اقرأ أيضاً

In this paper we consider the Matsumoto metric $F=frac{alpha^2}{alpha-beta}$, on the three dimensional real vector space and obtain the partial differential equations that characterize the minimal surfaces which are graphs of smooth functions and the n we prove that plane is the only such surface. We also obtain the partial differential equation that characterizes the minimal translation surfaces and show that again plane is the only such surface.
In this paper we consider a three dimensional Kropina space and obtain the partial differential equation that characterizes a minimal surfaces with the induced metric. Using this characterization equation we study various immersions of minimal surfac es. In particular, we obtain the partial differential equation that characterizes the minimal translation surfaces and show that the plane is the only such surface.
We prove a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of $mathbb{R}^{3}_{raisepunct{.}}$ We also show that any minimal hypersurface immersed with bou nded curvature in $Mtimes R_+$ equals some $Mtimes {s}$ provided $M$ is a complete, recurrent $n$-dimensional Riemannian manifold with $text{Ric}_M geq 0$ and whose sectional curvatures are bounded from above. For $H$-surfaces we prove that a stochastically complete surface $M$ can not be in the mean convex side of a $H$-surface $N$ embedded in $R^3$ with bounded curvature if $sup vert H_{_M}vert < H$, or ${rm dist}(M,N)=0$ when $sup vert H_{_M}vert = H$. Finally, a maximum principle at infinity is shown assuming $M$ has non-empty boundary.
146 - Andrew Clarke 2010
We consider immersions of a Riemann surface into a manifold with $G_2$-holonomy and give criteria for them to be conformal and harmonic, in terms of an associated Gauss map.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا