ﻻ يوجد ملخص باللغة العربية
Over the past years, machine learning has emerged as a powerful computational tool to tackle complex problems over a broad range of scientific disciplines. In particular, artificial neural networks have been successfully deployed to mitigate the exponential complexity often encountered in quantum many-body physics, the study of properties of quantum systems built out of a large number of interacting particles. In this Article, we overview some applications of machine learning in condensed matter physics and quantum information, with particular emphasis on hands-on tutorials serving as a quick-start for a newcomer to the field. We present supervised machine learning with convolutional neural networks to learn a phase transition, unsupervised learning with restricted Boltzmann machines to perform quantum tomography, and variational Monte Carlo with recurrent neural-networks for approximating the ground state of a many-body Hamiltonian. We briefly review the key ingredients of each algorithm and their corresponding neural-network implementation, and show numerical experiments for a system of interacting Rydberg atoms in two dimensions.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.1
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
The existence of many-body mobility edges in closed quantum systems has been the focus of intense debate after the emergence of the description of the many-body localization phenomenon. Here we propose that this issue can be settled in experiments by
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorde