ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear Induced Orientational Ordering in Active Glass

76   0   0.0 ( 0 )
 نشر من قبل Rituparno Mandal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense assemblies of self propelled particles, also known as active or living glasses are abundantaround us, covering different length and time scales: from the cytoplasm to tissues, from bacterialbio-films to vehicular traffic jams, from Janus colloids to animal herds. Being structurally disorderedas well as strongly out of equilibrium, these systems show fascinating dynamical and mechanicalproperties. Using extensive molecular dynamics simulation and a number of different dynamicaland mechanical order parameters we differentiate three dynamical steady states in a sheared modelactive glassy system: (a) a disordered phase, (b) a propulsion-induced ordered phase, and (c) ashear-induced ordered phase. We supplement these observations with an analytical theory based onan effective single particle Fokker-Planck description to rationalise the existence of the novel shear-induced orientational ordering behaviour in our model active glassy system that has no explicitaligning interactions,e.g.of Vicsek-type. This ordering phenomenon occurs in the large persistencetime limit and is made possible only by the applied steady shear. Using a Fokker-Planck descriptionwe make testable predictions without any fit parameters for the joint distribution of single particleposition and orientation. These predictions match well with the joint distribution measured fromdirect numerical simulation. Our results are of relevance for experiments exploring the rheologicalresponse of dense active colloids and jammed active granular matter systems.



قيم البحث

اقرأ أيضاً

Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or gr anular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.
119 - Brad Jacobsen 1999
We show that smectic liquid crystals confined in_anisotropic_ porous structures such as e.g.,_strained_ aerogel or aerosil exhibit two new glassy phases. The strain both ensures the stability of these phases and determines their nature. One type of s train induces an ``XY Bragg glass, while the other creates a novel, triaxially anisotropic ``m=1 Bragg glass. The latter exhibits anomalous elasticity, characterized by exponents that we calculate to high precision. We predict the phase diagram for the system, and numerous other experimental observables.
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreo ver, it is well known that a glass is heterogeneous and a global perturbation cannot explore local mechanical/transport properties. However, an investigation based on a local probe, i.e. microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass: a probe particle driven into host medium glass. This is a technique amenable for experimental investigations. We show that upon cooling the microscopic friction exhibits a second-order phase transition; this sheds light on the origin of friction in heterogeneous materials. Further, we provide distinct evidence to demonstrate that a strong relationship exists between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.
We analyze multiple new issues concerning activated relaxation in glassy hard sphere fluids and molecular and polymer liquids based on the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory. By invoking a high temperature reference sta te, a near universality of the apparent dynamic localization length scale is predicted for liquids of widely varying fragility, a result that is relevant to recent simulation studies and quasi-elastic neutron scattering measurements. In contrast, in the same format strongly non-universal behavior is found for the activation barrier that controls long time relaxation. Two measures of cooperativity in ECNLE theory are analyzed. A particle-level total displacement associated with the alpha relaxation event is found to be only of order 1-2 particle diameters and weakly increases with cooling. In contrast, an alternative cooperativity length is defined as the spatial scale required to recover the full barrier and bulk alpha time. This length scale grows strongly with cooling due to the emergence in the deeply supercooled regime of collective long range elastic fluctuations required to allow local hopping. It becomes very large as the laboratory Tg is approached, though is relatively modest at degrees of supercooling accessible with molecular dynamics simulation. The alpha time is found to be exponentially related to this cooperativity length over an enormous number of decades of relaxation time that span the lightly to deeply supercooled regimes. Moreover, the effective barrier height increases almost linearly with the growing cooperativity length scale. An alternative calculation of the collective elastic barrier based on a literal continuum mechanics approach is shown to result in very little change of the theoretical results for bulk properties, but leads to a much smaller and less temperature-sensitive cooperativity length scale.
257 - T. Nattermann , S. Scheidl 2000
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا