ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel method for mild cognitive impairment detection based on jointly exploiting the complex network and the neural network paradigm. In particular, the method is based on ensembling different brain structural perspectives with artificial neural networks. On one hand, these perspectives are obtained with complex network measures tailored to describe the altered brain connectivity. In turn, the brain reconstruction is obtained by combining diffusion-weighted imaging (DWI) data to tractography algorithms. On the other hand, artificial neural networks provide a means to learn a mapping from topological properties of the brain to the presence or absence of cognitive decline. The effectiveness of the method is studied on a well-known benchmark data set in order to evaluate if it can provide an automatic tool to support the early disease diagnosis. Also, the effects of balancing issues are investigated to further assess the reliability of the complex network approach to DWI data.
We analyze the spaces of images encoded by generative networks of the BigGAN architecture. We find that generic multiplicative perturbations away from the photo-realistic point often lead to images which appear as artistic renditions of the correspon
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens
Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by tre
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human
Automated methods for breast cancer detection have focused on 2D mammography and have largely ignored 3D digital breast tomosynthesis (DBT), which is frequently used in clinical practice. The two key challenges in developing automated methods for DBT