ﻻ يوجد ملخص باللغة العربية
We have examined the star formation history (SFH) of Andromeda VII (And VII), the brightest and most massive dwarf spheroidal (dSph) satellite of the Andromeda galaxy (M 31). Although M 31 is surrounded by several dSph companions with old stellar populations and low metallicity, it has a metal-rich stellar halo with an age of 6$-$8 Gyr. This indicates that any evolutionary association between the stellar halo of M 31 and its dSph system is frail. Therefore, the question is whether And VII (a high-metallicity dSph located $sim$220 kpc from M 31), can be associated with M 31s young, metal-rich halo. Here, we perform the first reconstruction of the SFH of And VII employing long-period variable (LPV) stars. As the most-evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars, the birth mass of LPVs can be determined by connecting their near-infrared photometry to theoretical evolutionary tracks. We found 55 LPV candidates within two half-light radii, using multi-epoch imaging with the Isaac Newton Telescope in the $i$ and $V$ bands. Based on their birth mass function, the star-formation rate (SFR) of And VII was obtained as a function of cosmic time. The main epoch of star formation occurred $simeq 6.2$ Gyr ago with a SFR of $0.006pm0.002$ M$_odot$ yr$^{-1}$. Over the past 6 Gyr, we find slow star formation, which continued until 500 Myr ago with a SFR $sim0.0005pm0.0002$ M$_odot$ yr$^{-1}$. We determined And VIIs stellar mass $M=(13.3pm5.3)times10^6$ M$_odot$ within a half-light radius $r_{frac{1}{2}}=3.8pm0.3$ arcmin and metallicity $Z=0.0007$, and also derived its distance modulus of $mu=24.38$ mag.
Dwarf galaxies in the Local Group (LG) represent a distinct as well as diverse family of tracers of the earliest phases of galaxy assembly and the processing resulting from galactic harassment. Their stellar populations can be resolved and used as pr
An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5-m Isaac Newton Telescope (INT). 55 dwarf galaxies and four isolated globular clusters in the Local Group (LG) were observed with the Wide Field Camera (WFC). The m
We present the first reconstruction of the star formation history (SFH) of the Large and Small Magellanic Clouds (LMC and SMC) using Long Period Variable stars. These cool evolved stars reach their peak luminosity in the near-infrared; thus, their K-
The Local Group (LG) hosts many dwarf galaxies with diverse physical characteristics in terms of morphology, mass, star formation, and metallicity. To this end, LG can offer a unique site to tackle questions about the formation and evolution of galax
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends