ﻻ يوجد ملخص باللغة العربية
We consider a quantum-mechanical system, finite or extended, initially in its ground-state, exposed to a time-dependent potential pulse, with a slowly varying envelope and a carrier frequency $omega_0$. By working out a rigorous solution of the time-dependent Schrodinger equation in the high-$omega_0$ limit, we show that the linear response is completely suppressed after the switch-off of the pulse. We show, at the same time, that to the lowest order in $omega_0^{-1}$, observables are given in terms of the linear density response function $chi(rv,rv,omega)$, despite the problems nonlinearity. We propose a new spectroscopic technique based on these findings, which we name the Nonlinear High-Frequency Pulsed Spectroscopy (NLHFPS). An analysis of the jellium slab and sphere models reveals very high surface sensitivity of NLHFPS, which produces a richer excitation spectrum than accessible within the linear-response regime. Combining the advantages of the extraordinary surface sensitivity, the absence of constraints by the conventional dipole selection rules, and the ease of theoretical interpretation by means of the linear response time-dependent density functional theory, NLHFPS has the potential to evolve into a powerful characterization method in nanoscience and nanotechnology.
In this article we discuss the design and implementation of a novel microstrip resonator which allows for the absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstri
We have investigated the absorption spectrum of multilayer graphene in high magnetic fields. The low energy part of the spectrum of electrons in graphene is well described by the relativistic Dirac equation with a linear dispersion relation. However,
Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nan
Understanding, optimizing, and controlling the optical absorption process, exciton gemination, and electron-hole separation and conduction in low dimensional systems is a fundamental problem in materials science. However, robust and efficient methods
We develop a low-frequency perturbation theory in the extended Floquet Hilbert space of a periodically driven quantum systems, which puts the high- and low-frequency approximations to the Floquet theory on the same footing. It captures adiabatic pert