ﻻ يوجد ملخص باللغة العربية
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many randomization tests are also valid for a bounded null hypothesis under which effects are all negative (or positive) for all units but otherwise heterogeneous. The bounded null is closely related to important concepts such as monotonicity and Pareto efficiency. Inverting tests of this hypothesis yields confidence intervals for the maximum (or minimum) individual treatment effect. We then extend randomization tests to infer other quantiles of individual effects, which can be used to infer the proportion of units with effects larger (or smaller) than any threshold. The proposed confidence intervals for all quantiles of individual effects are simultaneously valid, in the sense that no correction due to multiple analyses is needed. In sum, we provide a broader justification for Fisher randomization tests, and develop exact nonparametric inference for quantiles of heterogeneous individual effects. We illustrate our methods with simulations and applications, where we find that Stephenson rank statistics often provide the most informative results.
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es
In this paper, we study the estimation and inference of the quantile treatment effect under covariate-adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile
In science, the most widespread statistical quantities are perhaps $p$-values. A typical advice is to reject the null hypothesis $H_0$ if the corresponding p-value is sufficiently small (usually smaller than 0.05). Many criticisms regarding p-values
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on
Causal effect sizes may vary among individuals and they can even be of opposite directions. When there exists serious effect heterogeneity, the population average causal effect (ACE) is not very informative. It is well-known that individual causal ef