ﻻ يوجد ملخص باللغة العربية
Image segmentation is one of the most essential biomedical image processing problems for different imaging modalities, including microscopy and X-ray in the Internet-of-Medical-Things (IoMT) domain. However, annotating biomedical images is knowledge-driven, time-consuming, and labor-intensive, making it difficult to obtain abundant labels with limited costs. Active learning strategies come into ease the burden of human annotation, which queries only a subset of training data for annotation. Despite receiving attention, most of active learning methods generally still require huge computational costs and utilize unlabeled data inefficiently. They also tend to ignore the intermediate knowledge within networks. In this work, we propose a deep active semi-supervised learning framework, DSAL, combining active learning and semi-supervised learning strategies. In DSAL, a new criterion based on deep supervision mechanism is proposed to select informative samples with high uncertainties and low uncertainties for strong labelers and weak labelers respectively. The internal criterion leverages the disagreement of intermediate features within the deep learning network for active sample selection, which subsequently reduces the computational costs. We use the proposed criteria to select samples for strong and weak labelers to produce oracle labels and pseudo labels simultaneously at each active learning iteration in an ensemble learning manner, which can be examined with IoMT Platform. Extensive experiments on multiple medical image datasets demonstrate the superiority of the proposed method over state-of-the-art active learning methods.
Segmentation is a prerequisite yet challenging task for medical image analysis. In this paper, we introduce a novel deeply supervised active learning approach for finger bones segmentation. The proposed architecture is fine-tuned in an iterative and
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundan
Automated segmentation in medical image analysis is a challenging task that requires a large amount of manually labeled data. However, manually annotating medical data is often laborious, and most existing learning-based approaches fail to accurately
This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps captur
3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths an