ﻻ يوجد ملخص باللغة العربية
String theory on AdS$_3$ with NS-NS fluxes admits a solvable irrelevant deformation which is close to the $Tbar{T}$ deformation of the dual CFT$_2$. This consists of deforming the worldsheet action, namely the action of the $SL(2,mathbb{R})$ WZW model, by adding to it the operator $J^-bar{J}^-$, constructed with two Kac-Moody currents. The geometrical interpretation of the resulting theory is that of strings on a conformally flat background that interpolates between AdS$_3$ in the IR and a flat linear dilaton spacetime with Hagedorn spectrum in the UV, having passed through a transition region of positive curvature. Here, we study the properties of this string background both from the point of view of the low-energy effective theory and of the worldsheet CFT. We first study the geometrical properties of the semiclassical geometry, then we revise the computation of correlation functions and of the spectrum of the $J^-bar{J}^-$-deformed worldsheet theory, and finally we discuss how to extend this type of current-current deformation to other conformal models.
In this work, we continue our study of string theory in the background that interpolates between $AdS_3$ in the IR to flat spacetime with a linear dilaton in the UV. The boundary dual theory interpolates between a CFT$_2$ in the IR to a certain two-d
We investigate the $Tbar{T}$ deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the $Tbar{T}$ deforming operator can be constructed
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat
We explore the $Jbar{T}$ and $Tbar{J}$ deformations of two-dimensional field theories possessing $mathcal N=(0,1),(1,1)$ and $(0,2)$ supersymmetry. Based on the stress-tensor and flavor current multiplets, we construct various bilinear supersymmetric
In this paper, we continue the study of $Tbar{T}$ deformation in $d=1$ quantum mechanical systems and propose possible analogues of $Jbar{T}$ deformation and deformation by a general linear combination of $Tbar{T}$ and $Jbar{T}$ in quantum mechanics.