Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet current creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.