ترغب بنشر مسار تعليمي؟ اضغط هنا

Palindromic and Colored Superdiagonal Compositions

112   0   0.0 ( 0 )
 نشر من قبل Jos\\'e Luis Ram\\'irez
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A superdiagonal composition is one in which the $i$-th part or summand is of size greater than or equal to $i$. In this paper, we study the number of palindromic superdiagonal compositions and colored superdiagonal compositions. In particular, we give generating functions and explicit combinatorial formulas involving binomial coefficients and Stirling numbers of the first kind.



قيم البحث

اقرأ أيضاً

A palindromic composition of $n$ is a composition of $n$ which can be read the same way forwards and backwards. In this paper we define an anti-palindromic composition of $n$ to be a composition of $n$ which has no mirror symmetry amongst its parts. We then give a surprising connection between the number of anti-palindromic compositions of $n$ and the so-called tribonacci sequence, a generalization of the Fibonacci sequence. We conclude by defining a new q-analogue of the Fibonacci sequence, which is related to certain equivalence classes of anti-palindromic compositions
162 - Matthew Just 2021
In recent work, G. E. Andrews and G. Simay prove a surprising relation involving parity palindromic compositions, and ask whether a combinatorial proof can be found. We extend their results to a more general class of compositions that are palindromic modulo $m$, that includes the parity palindromic case when $m=2$. We then provide combinatorial proofs for the cases $m=2$ and $m=3$.
Jelinek, Mansour, and Shattuck studied Wilf-equivalence among pairs of patterns of the form ${sigma,tau}$ where $sigma$ is a set partition of size $3$ with at least two blocks. They obtained an upper bound for the number of Wilf-equivalence classes f or such pairs. We show that their upper bound is the exact number of equivalence classes, thus solving a problem posed by them.
Properly colored cycles in edge-colored graphs are closely related to directed cycles in oriented graphs. As an analogy of the well-known Caccetta-H{a}ggkvist Conjecture, we study the existence of properly colored cycles of bounded length in an edge- colored graph. We first prove that for all integers $s$ and $t$ with $tgeq sgeq2$, every edge-colored graph $G$ with no properly colored $K_{s,t}$ contains a spanning subgraph $H$ which admits an orientation $D$ such that every directed cycle in $D$ is a properly colored cycle in $G$. Using this result, we show that for $rgeq4$, if the Caccetta-H{a}ggkvist Conjecture holds , then every edge-colored graph of order $n$ with minimum color degree at least $n/r+2sqrt{n}+1$ contains a properly colored cycle of length at most $r$. In addition, we also obtain an asymptotically tight total color degree condition which ensures a properly colored (or rainbow) $K_{s,t}$.
141 - Xiaochuan Liu 2011
In this work, we give combinatorial proofs for generating functions of two problems, i.e., flushed partitions and concave compositions of even length. We also give combinatorial interpretation of one problem posed by Sylvester involving flushed parti tions and then prove it. For these purposes, we first describe an involution and use it to prove core identities. Using this involution with modifications, we prove several problems of different nature, including Andrews partition identities involving initial repetitions and partition theoretical interpretations of three mock theta functions of third order $f(q)$, $phi(q)$ and $psi(q)$. An identity of Ramanujan is proved combinatorially. Several new identities are also established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا