ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmons in the van der Waals charge-density-wave material 2H-TaSe2

269   0   0.0 ( 0 )
 نشر من قبل Chaoyu Song
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a correlated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 {mu}m) to the telecom (1.55 {mu}m) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.



قيم البحث

اقرأ أيضاً

The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Van-der-Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of o ptoelectronics, the underlying microscopic mechanism remains controversial. Here we use time- and angle-resolved photoemission spectroscopy combined with microscopic many-particle theory to reveal the relevant microscopic charge transfer channels in epitaxial WS$_2$/graphene heterostructures. We find that the timescale for efficient ultrafast charge separation in the material is determined by direct tunneling at those points in the Brillouin zone where WS$_2$ and graphene bands cross, while the lifetime of the charge separated transient state is set by defect-assisted tunneling through localized sulphur vacanices. The subtle interplay of intrinsic and defect-related charge transfer channels revealed in the present work can be exploited for the design of highly efficient light harvesting and detecting devices.
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation. Degradation is an important parameter which has been shown to greatly influence the superconductivity in layered systems. Since the CDW state competes with the onset of superconductivity, it is expected that $T_{CDW}$ will also be affected by the degradation. Here, we probe the CDW phase transition by the mechanical resonances of suspended 2H-TaS2 and 2H-TaSe2 membranes and study the effect of disorder on the CDW state. Pristine flakes show the transition near the reported values of 75 K and 122 K respectively. We then study the effect of degradation on 2H-TaS2 which displays an enhancement of $T_{CDW}$ up to 129 K after degradation in ambient air. Finally, we study a sample with local degradation and observe that multiple phase transitions occur at 87 K, 103 K and 118 K with a hysteresis in temperature in the same membrane. The observed spatial variations in the Raman spectra suggest that variations in crystal structure cause domains with different transition temperatures which could result in the hysteresis. This work shows the potential of using nanomechanical resonance to characterize the CDW in suspended 2D materials and demonstrate that degradation can have a large effect on transition temperatures.
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic tory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links be tween real materials properties and terms that can be cooked up on the model Hamiltonian level to realize different exotic phenomena. Our review aims to do precisely this: we first discuss, in a way accessible to the materials community, what ingredients need to be included in the hybrid quantum materials recipe, and second, we elaborate on the specific materials that would possess the necessary qualities. We will review the well-established procedures for realizing 2D topological superconductors, quantum spin-liquids and flat bands systems, emphasizing the connection between well-known model Hamiltonians and real compounds. We will use the most recent experimental results to illustrate the power of the designer approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا