ﻻ يوجد ملخص باللغة العربية
Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a correlated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 {mu}m) to the telecom (1.55 {mu}m) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
Van-der-Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of o
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links be