ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-modal Learning for Domain Adaptation in 3D Semantic Segmentation

134   0   0.0 ( 0 )
 نشر من قبل Maximilian Jaritz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation is an important task to enable learning when labels are scarce. While most works focus only on the image modality, there are many important multi-modal datasets. In order to leverage multi-modality for domain adaptation, we propose cross-modal learning, where we enforce consistency between the predictions of two modalities via mutual mimicking. We constrain our network to make correct predictions on labeled data and consistent predictions across modalities on unlabeled target-domain data. Experiments in unsupervised and semi-supervised domain adaptation settings prove the effectiveness of this novel domain adaptation strategy. Specifically, we evaluate on the task of 3D semantic segmentation using the image and point cloud modality. We leverage recent autonomous driving datasets to produce a wide variety of domain adaptation scenarios including changes in scene layout, lighting, sensor setup and weather, as well as the synthetic-to-real setup. Our method significantly improves over previous uni-modal adaptation baselines on all adaption scenarios. Code will be made available.



قيم البحث

اقرأ أيضاً

Unsupervised Domain Adaptation (UDA) is crucial to tackle the lack of annotations in a new domain. There are many multi-modal datasets, but most UDA approaches are uni-modal. In this work, we explore how to learn from multi-modality and propose cross -modal UDA (xMUDA) where we assume the presence of 2D images and 3D point clouds for 3D semantic segmentation. This is challenging as the two input spaces are heterogeneous and can be impacted differently by domain shift. In xMUDA, modalities learn from each other through mutual mimicking, disentangled from the segmentation objective, to prevent the stronger modality from adopting false predictions from the weaker one. We evaluate on new UDA scenarios including day-to-night, country-to-country and dataset-to-dataset, leveraging recent autonomous driving datasets. xMUDA brings large improvements over uni-modal UDA on all tested scenarios, and is complementary to state-of-the-art UDA techniques. Code is available at https://github.com/valeoai/xmuda.
170 - Duo Peng , Yinjie Lei , Wen Li 2021
Domain adaptation is critical for success when confronting with the lack of annotations in a new domain. As the huge time consumption of labeling process on 3D point cloud, domain adaptation for 3D semantic segmentation is of great expectation. With the rise of multi-modal datasets, large amount of 2D images are accessible besides 3D point clouds. In light of this, we propose to further leverage 2D data for 3D domain adaptation by intra and inter domain cross modal learning. As for intra-domain cross modal learning, most existing works sample the dense 2D pixel-wise features into the same size with sparse 3D point-wise features, resulting in the abandon of numerous useful 2D features. To address this problem, we propose Dynamic sparse-to-dense Cross Modal Learning (DsCML) to increase the sufficiency of multi-modality information interaction for domain adaptation. For inter-domain cross modal learning, we further advance Cross Modal Adversarial Learning (CMAL) on 2D and 3D data which contains different semantic content aiming to promote high-level modal complementarity. We evaluate our model under various multi-modality domain adaptation settings including day-to-night, country-to-country and dataset-to-dataset, brings large improvements over both uni-modal and multi-modal domain adaptation methods on all settings.
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri ved from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.
Domain adaptation for semantic segmentation enables to alleviate the need for large-scale pixel-wise annotations. Recently, self-supervised learning (SSL) with a combination of image-to-image translation shows great effectiveness in adaptive segmenta tion. The most common practice is to perform SSL along with image translation to well align a single domain (the source or target). However, in this single-domain paradigm, unavoidable visual inconsistency raised by image translation may affect subsequent learning. In this paper, based on the observation that domain adaptation frameworks performed in the source and target domain are almost complementary in terms of image translation and SSL, we propose a novel dual path learning (DPL) framework to alleviate visual inconsistency. Concretely, DPL contains two complementary and interactive single-domain adaptation pipelines aligned in source and target domain respectively. The inference of DPL is extremely simple, only one segmentation model in the target domain is employed. Novel technologies such as dual path image translation and dual path adaptive segmentation are proposed to make two paths promote each other in an interactive manner. Experiments on GTA5$rightarrow$Cityscapes and SYNTHIA$rightarrow$Cityscapes scenarios demonstrate the superiority of our DPL model over the state-of-the-art methods. The code and models are available at: url{https://github.com/royee182/DPL}
Since annotating pixel-level labels for semantic segmentation is laborious, leveraging synthetic data is an attractive solution. However, due to the domain gap between synthetic domain and real domain, it is challenging for a model trained with synth etic data to generalize to real data. In this paper, considering the fundamental difference between the two domains as the texture, we propose a method to adapt to the texture of the target domain. First, we diversity the texture of synthetic images using a style transfer algorithm. The various textures of generated images prevent a segmentation model from overfitting to one specific (synthetic) texture. Then, we fine-tune the model with self-training to get direct supervision of the target texture. Our results achieve state-of-the-art performance and we analyze the properties of the model trained on the stylized dataset with extensive experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا