ﻻ يوجد ملخص باللغة العربية
We consider the coded caching problem with an additional privacy constraint that a user should not get any information about the demands of the other users. We first show that a demand-private scheme for $N$ files and $K$ users can be obtained from a non-private scheme that serves only a subset of the demands for the $N$ files and $NK$ users problem. We further use this fact to construct a demand-private scheme for $N$ files and $K$ users from a particular known non-private scheme for $N$ files and $NK-K+1$ users. It is then demonstrated that, the memory-rate pair $(M,min {N,K}(1-M/N))$, which is achievable for non-private schemes with uncoded transmissions, is also achievable under demand privacy. We further propose a scheme that improves on these ideas by removing some redundant transmissions. The memory-rate trade-off achieved using our schemes is shown to be within a multiplicative factor of 3 from the optimal when $K < N$ and of 8 when $Nleq K$. Finally, we give the exact memory-rate trade-off for demand-private coded caching problems with $Ngeq K=2$.
Coded Caching is an efficient technique to reduce peak hour network traffic. One limitation of known coded caching schemes is that the demands of all users are revealed to their peers in the delivery phase. Schemes that assure privacy for user demand
This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is strong
Recently Hachem et al. formulated a multiaccess coded caching model which consists of a central server connected to $K$ users via an error-free shared link, and $K$ cache-nodes. Each cache-node is equipped with a local cache and each user can access
The demand private coded caching problem in a multi-access network with $K$ users and $K$ caches, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is studied. The additional constraint imposed is that one user sho
Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of network caching algorithm