ﻻ يوجد ملخص باللغة العربية
The nucleon-nucleon correlation between nucleons leads to the Fermi surface depletion measured by a $Z$-factor in momentum distribution of dense nuclear matter. The roles of the Fermi surface depletion effect ($Z$-factor effect) and its quenched neutron triplet superfluidity of nuclear matter in viscosity and hence in the gravitational-wave-driven $r$-mode instability of neutron stars (NSs) are investigated. The bulk viscosity is reduced by both the two effects, especially the superfluid effect at low temperatures which is also able to reduce the inferred core temperature of NSs. Intriguingly, due to the neutron superfluidity, the core temperature of the NSs in known low-mass X-ray binaries (LMXBs) are found to be clearly divided into two groups: high and low temperatures which correspond to NSs with short and long recurrence times for nuclear-powered bursts respectively. Yet, a large number of NSs in these LMXBs are still located in the $r$-mode instability region. If the density-dependent symmetry energy is stiff enough, the occurence of direct Urca process reduces the inferred core temperature by about one order of magnitude. Accordingly, the contradiction between the predictions and observations is alleviated to some extent, but some NSs are still located inside the unstable region.
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid criti
We perform a systematic study of the dependence of the r-mode phenomenology in normal fluid pulsar neutron stars on the symmetry energy slope parameter $L$. An essential ingredient in this study is the bulk viscosity, which is evaluated consistently
We investigate the properties of dense matter and neutron stars. In particular we discuss model calculations based on the parity doublet picture of hadronic chiral symmetry. In this ansatz the onset of chiral symmetry restoration is reflected by the
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neu
The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A s