ﻻ يوجد ملخص باللغة العربية
We study linear-quadratic optimal control problems for Voterra systems, and problems that are linear-quadratic in the control but generally nonlinear in the state. In the case of linear-quadratic Volterra control, we obtain sharp necessary and sufficient conditions for optimality. For problems that are linear-quadratic in the control only, we obtain a novel form of necessary conditions in the form of double Volterra equation; we prove the solvability of such equations.
This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Under proper convexity conditions, optimal control uniquely exists, and it could be characterized via Frechet derivative of the quadr
We provide an exhaustive treatment of Linear-Quadratic control problems for a class of stochastic Volterra equations of convolution type, whose kernels are Laplace transforms of certain signed matrix measures which are not necessarily finite. These e
We consider the linear quadratic Gaussian control problem with a discounted cost functional for descriptor systems on the infinite time horizon. Based on recent results from the deterministic framework, we characterize the feasibility of this problem
We establish existence and uniqueness for infinite dimensional Riccati equations taking values in the Banach space L 1 ($mu$ $otimes$ $mu$) for certain signed matrix measures $mu$ which are not necessarily finite. Such equations can be seen as the in
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved usin