We develop a multicomponent lattice Boltzmann (LB) model for the 2D Rayleigh--Taylor turbulence with a Shan-Chen pseudopotential implemented on GPUs. In the immiscible case this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. Accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion we analyze the balance between different terms describing variations of the kinetic and potential energies. Then, we analyze the role of interface in the energy balance, and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to 3D immiscible Rayleigh-Taylor turbulence.