ﻻ يوجد ملخص باللغة العربية
We use the wealth of deep archival optical spectroscopy on the GOODS-South field from Keck, the VLT, and other facilities to select candidate high-redshift Lyman continuum (LyC) leakers in the Hubble Deep UV Legacy Survey (HDUV) dataset. We select sources at $2.35 < z < 3.05$, where the HST/WFC3 F275W filter probes only the redshifted LyC. We find five moderately F275W-bright sources (four detected at $gtrsim3sigma$ significance) in this redshift range. However, two of these show evidence in their optical spectra for contamination by foreground galaxies along the line-of-sight. We then perform an F275W error-weighted sum of the fluxes of all 129 galaxies at $2.35 < z < 3.05$ in both the GOODS-N and GOODS-S HDUV areas to estimate the total ionizing flux. The result is dominated by just five candidate F275W-bright LyC sources. Lastly, we examine the contributions to the metagalactic ionizing background, finding that, at the sensitivity of the HDUV F275W data and allowing for the effects of LyC transmission in the intergalactic medium (IGM), star-forming galaxies can match the UV flux required to maintain an ionized IGM at $z sim 2.5$.
We present our analysis of the LyC emission and escape fraction of 111 spectroscopically verified galaxies with and without AGN from $2.26<z<4.3$. We extended our ERS sample from Smith et al. (2018; arXiv:1602.01555) with 64 galaxies in the GOODS Nor
The reionization of the Universe is one of the most important topics of present day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of th
We analyze the >4-sigma sources in the most sensitive 100 arcmin^2 area (rms <0.56 mJy) of a SCUBA-2 850 micron survey of the GOODS-S and present the 75 band 7 ALMA sources (>4.5-sigma) obtained from high-resolution interferometric follow-up observat
Identifying non-contaminated sample of high-redshift galaxies with escaping Lyman continuum (LyC) flux is important for understanding the sources and evolution of cosmic reionization. We present CLAUDS $u$-band photometry of the COSMOS field to probe
Questions as to what drove the bulk reionization of the Universe, how that reionization proceeded, and how the hard ionizing radiation reached the intergalactic medium remain open and debated. Observations probing that epoch are severely hampered by