ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Household Online Shopping Demand in the U.S.: A Machine Learning Approach and Comparative Investigation between 2009 and 2017

112   0   0.0 ( 0 )
 نشر من قبل Limon Barua
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the rapid growth of online shopping and research interest in the relationship between online and in-store shopping, national-level modeling and investigation of the demand for online shopping with a prediction focus remain limited in the literature. This paper differs from prior work and leverages two recent releases of the U.S. National Household Travel Survey (NHTS) data for 2009 and 2017 to develop machine learning (ML) models, specifically gradient boosting machine (GBM), for predicting household-level online shopping purchases. The NHTS data allow for not only conducting nationwide investigation but also at the level of households, which is more appropriate than at the individual level given the connected consumption and shopping needs of members in a household. We follow a systematic procedure for model development including employing Recursive Feature Elimination algorithm to select input variables (features) in order to reduce the risk of model overfitting and increase model explainability. Extensive post-modeling investigation is conducted in a comparative manner between 2009 and 2017, including quantifying the importance of each input variable in predicting online shopping demand, and characterizing value-dependent relationships between demand and the input variables. In doing so, two latest advances in machine learning techniques, namely Shapley value-based feature importance and Accumulated Local Effects plots, are adopted to overcome inherent drawbacks of the popular techniques in current ML modeling. The modeling and investigation are performed both at the national level and for three of the largest cities (New York, Los Angeles, and Houston). The models developed and insights gained can be used for online shopping-related freight demand generation and may also be considered for evaluating the potential impact of relevant policies on online shopping demand.



قيم البحث

اقرأ أيضاً

Recent years have witnessed an increased focus on interpretability and the use of machine learning to inform policy analysis and decision making. This paper applies machine learning to examine travel behavior and, in particular, on modeling changes i n travel modes when individuals are presented with a novel (on-demand) mobility option. It addresses the following question: Can machine learning be applied to model individual taste heterogeneity (preference heterogeneity for travel modes and response heterogeneity to travel attributes) in travel mode choice? This paper first develops a high-accuracy classifier to predict mode-switching behavior under a hypothetical Mobility-on-Demand Transit system (i.e., stated-preference data), which represents the case study underlying this research. We show that this classifier naturally captures individual heterogeneity available in the data. Moreover, the paper derives insights on heterogeneous switching behaviors through the generation of marginal effects and elasticities by current travel mode, partial dependence plots, and individual conditional expectation plots. The paper also proposes two new model-agnostic interpretation tools for machine learning, i.e., conditional partial dependence plots and conditional individual partial dependence plots, specifically designed to examine response heterogeneity. The results on the case study show that the machine-learning classifier, together with model-agnostic interpretation tools, provides valuable insights on travel mode switching behavior for different individuals and population segments. For example, the existing drivers are more sensitive to additional pickups than people using other travel modes, and current transit users are generally willing to share rides but reluctant to take any additional transfers.
193 - Xilei Zhao , Xiang Yan , Alan Yu 2018
Logit models are usually applied when studying individual travel behavior, i.e., to predict travel mode choice and to gain behavioral insights on traveler preferences. Recently, some studies have applied machine learning to model travel mode choice a nd reported higher out-of-sample predictive accuracy than traditional logit models (e.g., multinomial logit). However, little research focuses on comparing the interpretability of machine learning with logit models. In other words, how to draw behavioral insights from the high-performance black-box machine-learning models remains largely unsolved in the field of travel behavior modeling. This paper aims at providing a comprehensive comparison between the two approaches by examining the key similarities and differences in model development, evaluation, and behavioral interpretation between logit and machine-learning models for travel mode choice modeling. To complement the theoretical discussions, the paper also empirically evaluates the two approaches on the stated-preference survey data for a new type of transit system integrating high-frequency fixed-route services and ridesourcing. The results show that machine learning can produce significantly higher predictive accuracy than logit models. Moreover, machine learning and logit models largely agree on many aspects of behavioral interpretations. In addition, machine learning can automatically capture the nonlinear relationship between the input features and choice outcomes. The paper concludes that there is great potential in merging ideas from machine learning and conventional statistical methods to develop refined models for travel behavior research and suggests some new research directions.
The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients. This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases. From the 11,245 participants testing positive for COVID-19, we develop a data-driven random forest classification model with excellent performance (AUC: 0.91), using baseline characteristics, pre-existing conditions, symptoms, and vital signs, such that the score could dynamically assess mortality risk with disease deterioration. We also identify several significant novel predictors of COVID-19 mortality with equivalent or greater predictive value than established high-risk comorbidities, such as detailed anthropometrics and prior acute kidney failure, urinary tract infection, and pneumonias. The model design and feature selection enables utility in outpatient settings. Possible applications include supporting individual-level risk profiling and monitoring disease progression across patients with COVID-19 at-scale, especially in hospital-at-home settings.
Our team is proposing to run a full-scale energy demand response experiment in an office building. Although this is an exciting endeavor which will provide value to the community, collecting training data for the reinforcement learning agent is costl y and will be limited. In this work, we examine how offline training can be leveraged to minimize data costs (accelerate convergence) and program implementation costs. We present two approaches to doing so: pretraining our model to warm start the experiment with simulated tasks, and using a planning model trained to simulate the real worlds rewards to the agent. We present results that demonstrate the utility of offline reinforcement learning to efficient price-setting in the energy demand response problem.
Scientific Computing relies on executing computer algorithms coded in some programming languages. Given a particular available hardware, algorithms speed is a crucial factor. There are many scientific computing environments used to code such algorith ms. Matlab is one of the most tremendously successful and widespread scientific computing environments that is rich of toolboxes, libraries, and data visualization tools. OpenCV is a (C++)-based library written primarily for Computer Vision and its related areas. This paper presents a comparative study using 20 different real datasets to compare the speed of Matlab and OpenCV for some Machine Learning algorithms. Although Matlab is more convenient in developing and data presentation, OpenCV is much faster in execution, where the speed ratio reaches more than 80 in some cases. The best of two worlds can be achieved by exploring using Matlab or similar environments to select the most successful algorithm; then, implementing the selected algorithm using OpenCV or similar environments to gain a speed factor.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا