ﻻ يوجد ملخص باللغة العربية
Embodied instruction following is a challenging problem requiring an agent to infer a sequence of primitive actions to achieve a goal environment state from complex language and visual inputs. Action Learning From Realistic Environments and Directives (ALFRED) is a recently proposed benchmark for this problem consisting of step-by-step natural language instructions to achieve subgoals which compose to an ultimate high-level goal. Key challenges for this task include localizing target locations and navigating to them through visual inputs, and grounding language instructions to visual appearance of objects. To address these challenges, in this study, we augment the agents field of view during navigation subgoals with multiple viewing angles, and train the agent to predict its relative spatial relation to the target location at each timestep. We also improve language grounding by introducing a pre-trained object detection module to the model pipeline. Empirical studies show that our approach exceeds the baseline model performance.
Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a su
In Cyberspace nowadays, there is a burst of information that everyone has access. However, apart from the advantages the Internet offers, it also hides numerous dangers for both people and nations. Cyberspace has a dark side, including terrorism, bul
Developers create software branches for tentative feature addition and bug fixing, and periodically merge branches to release software with new features or repairing patches. When the program edits from different branches textually overlap (i.e., tex
We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by spec
In-Memory Acceleration (IMA) promises major efficiency improvements in deep neural network (DNN) inference, but challenges remain in the integration of IMA within a digital system. We propose a heterogeneous architecture coupling 8 RISC-V cores with