ترغب بنشر مسار تعليمي؟ اضغط هنا

More Tolerant Reconstructed Networks by Self-Healing against Attacks in Saving Resource

141   0   0.0 ( 0 )
 نشر من قبل Yukio Hayashi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex network infrastructure systems for power-supply, communication, and transportation support our economical and social activities, however they are extremely vulnerable against the frequently increasing large disasters or attacks. Thus, a reconstructing from damaged network is rather advisable than empirically performed recovering to the original vulnerable one. In order to reconstruct a sustainable network, we focus on enhancing loops so as not to be trees as possible by node removals. Although this optimization is corresponded to an intractable combinatorial problem, we propose self-healing methods based on enhancing loops in applying an approximate calculation inspired from a statistical physics approach. We show that both higher robustness and efficiency are obtained in our proposed methods with saving the resource of links and ports than ones in the conventional healing methods. Moreover, the reconstructed network by healing can become more tolerant than the original one before attacks, when some extent of damaged links are reusable or compensated as investment of resource. These results will be open up the potential of network reconstruction by self-healing with adaptive capacity in the meaning of resilience.



قيم البحث

اقرأ أيضاً

With increasing threats by large attacks or disasters, the time has come to reconstruct network infrastructures such as communication or transportation systems rather than to recover them as before in case of accidents, because many real networks are extremely vulnerable. Thus, we consider self-healing mechanisms by rewirings (reuse or addition of links) to be sustainable and resilient networks even against malicious attacks. In distributed local process for healing, the key strategies are the extension of candidates of linked nodes and enhancing loops by applying a message-passing algorithm inspired from statistical physics. Simulation results show that our proposed combination of ring formation and enhancing loops is particularly effective in comparison with the conventional methods, when more than half damaged links alive or are compensated from reserved ones.
We show that real multiplex networks are unexpectedly robust against targeted attacks on high degree nodes, and that hidden interlayer geometric correlations predict this robustness. Without geometric correlations, multiplexes exhibit an abrupt break down of mutual connectivity, even with interlayer degree correlations. With geometric correlations, we instead observe a multistep cascading process leading into a continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are important for the design of efficient protection strategies and of robust interacting networks in many domains.
We introduce the concept of self-healing in the field of complex networks. Obvious applications range from infrastructural to technological networks. By exploiting the presence of redundant links in recovering the connectivity of the system, we intro duce self-healing capabilities through the application of distributed communication protocols granting the smartness of the system. We analyze the interplay between redundancies and smart reconfiguration protocols in improving the resilience of networked infrastructures to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. We study the effects of different connectivity patterns (planar square-grids, small-world, scale-free networks) on the healing performances. The study of small-world topologies shows us that the introduction of some long-range connections in the planar grids greatly enhances the resilience to multiple failures giving results comparable to the most resilient (but less realistic) scale-free structures.
We investigate robustness of correlated networks against propagating attacks modeled by a susceptible-infected-removed model. By Monte-Carlo simulations, we numerically determine the first critical infection rate, above which a global outbreak of dis ease occurs, and the second critical infection rate, above which disease disintegrates the network. Our result shows that correlated networks are robust compared to the uncorrelated ones, regardless of whether they are assortative or disassortative, when a fraction of infected nodes in an initial state is not too large. For large initial fraction, disassortative network becomes fragile while assortative network holds robustness. This behavior is related to the layered network structure inevitably generated by a rewiring procedure we adopt to realize correlated networks.
299 - Zhao-Hua Lin , Mi Feng , Ming Tang 2019
Non-Markovian spontaneous recovery processes with a time delay (memory) are ubiquitous in the real world. How does the non-Markovian characteristic affect failure propagation in complex networks? We consider failures due to internal causes at the nod al level and external failures due to an adverse environment, and develop a pair approximation analysis taking into account the two-node correlation. In general, a high failure stationary state can arise, corresponding to large-scale failures that can significantly compromise the functioning of the network. We uncover a striking phenomenon: memory associated with nodal recovery can counter-intuitively make the network more resilient against large-scale failures. In natural systems, the intrinsic non-Markovian characteristic of nodal recovery may thus be one reason for their resilience. In engineering design, incorporating certain non-Markovian features into the network may be beneficial to equipping it with a strong resilient capability to resist catastrophic failures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا