ﻻ يوجد ملخص باللغة العربية
We analyze the SDSS data to classify the galaxies based on their colour using a fuzzy set-theoretic method and quantify their environments using the local dimension. We find that the fraction of the green galaxies does not depend on the environment and $10%-20%$ of the galaxies at each environment are in the green valley depending on the stellar mass range chosen. Approximately $10%$ of the green galaxies at each environment host an AGN. Combining data from the Galaxy Zoo, we find that $sim 95%$ of the green galaxies are spirals and $sim 5%$ are ellipticals at each environment. Only $sim 8%$ of green galaxies exhibit signs of interactions and mergers, $sim 1%$ have dominant bulge, and $sim 6%$ host a bar. We show that the stellar mass distributions for the red and green galaxies are quite similar at each environment. Our analysis suggests that the majority of the green galaxies must curtail their star formation using physical mechanism(s) other than interactions, mergers, and those driven by bulge, bar and AGN activity. We speculate that these are the massive galaxies that have grown only via smooth accretion and suppressed the star formation primarily through mass driven quenching. Using a Kolmogorov-Smirnov test, we do not find any statistically significant difference between the properties of green galaxies in different environments. We conclude that the environmental factors play a minor role and the internal processes play the dominant role in quenching star formation in the green valley galaxies.
A clear transition feature of galaxy quenching is identified in the multi-parameter space of stellar mass ($M_*$), bulge to total mass ratio ($B/T_{rm m}$), halo mass ($M_{rm h}$) and halo-centric distance ($r/r_{180}$). For given halo mass, the char
In a framework where galaxies mostly migrate on the colour-magnitude diagram from star-forming to quiescent, the green valley is considered a transitional galaxy stage. The details of the processes that drive galaxies from star-forming to passive sys
We study radial profiles in H$alpha$ equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxys l
We use SDSS+textit{GALEX}+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass d
The strikingly anisotropic large-scale distribution of matter made of an extended network of voids delimited by sheets, themselves segmented by filaments, within which matter flows towards compact nodes where they intersect, imprints its geometry on