ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically Facet-Resolved Reaction Anisotropy in Two-Dimensional Transition Metal Dichalcogenides

186   0   0.0 ( 0 )
 نشر من قبل Sunmin Ryu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying anisotropy in the chemical reactions of mesoscopic crystals has mostly resorted on the combination of electron microscopy and diffraction. In this work, we established crystal-facet-resolved kinetic measurements of oxidation reactions in 2D transition metal dichalcogenides (TMDs) using optical second-harmonic generation spectroscopy and scanning probe microscopy. We show the in-plane anisotropy of their bond-breaking reactions is governed by their structure and strongly material-dependent among four TMDs. The facet-resolved analysis directly revealed that the reactions proceed fastest (slowest) for chalcogen (metal)-terminated zigzag edges with armchair edges in the middle. The degree of the anisotropy inducing trigonal oxidation patterns was much higher in MoS2 and MoSe2 than WS2 and WSe2. Kinetic Wulff construction based on edge-specific reaction rates verified the material-dependent mesoscopic reaction patterns. We also show that the reactions are initiated at substrate-mediated defects located on the bottom and top surfaces of 2D TMDs.



قيم البحث

اقرأ أيضاً

A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transition metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias field. In this work, we develop a theory for this photo-induced anomalous Hall effect in undoped TMDs irradiated by a strong coherent laser field. The strong field renormalizes the equilibrium bands and opens up a dynamical energy gap where single-photon resonance occurs. The resulting photon dressed states, or Floquet states, are treated within the rotating wave approximation. A quantum kinetic equation approach is developed to study the non-equilibrium density matrix and time-averaged transport currents under the simultaneous influence of the strong a.c. pump field and the weak d.c. probe field. Dissipative effects are taken into account in the kinetic equation that captures relaxation and dephasing. The photo-induced longitudinal and Hall conductivities display notable resonant signatures when the pump field frequency reaches the spin-split interband transition energies. Rather than valley polarization, we find that the anomalous Hall current is mainly driven by the intraband response of photon-dressed electron populations near the dynamical gap at both valleys, accompanied by a smaller contribution due to interband coherences. These findings highlight the importance of photon-dressed bands and non-equilibrium distribution functions in achieving a proper understanding of photo-induced anomalous Hall effect in a strong pump field.
283 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa u levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
Two dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary physical properties. The unique properties make them become ide al materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different types of van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
In this paper, starting from a quantum master equation, we discuss the interaction between two negatively charged Nitrogen-vacancy color centers in diamond via exciton-polaritons propagating in a two-dimensional transition metal dichalcogenide layer in close proximity to a diamond crystal. We focus on the optical 1.945 eV transition and model the Nitrogen-vacancy color centers as two-level (artificial) atoms. We find that the interaction parameters and the energy levels renormalization constants are extremely sensitive to the distance of the Nitrogen-vacancy centers to the transition metal dichalcogenide layer. Analytical expressions are obtained for the spectrum of the exciton-polaritons and for the damping constants entering the Lindblad equation. The conditions for occurrence of exciton mediated superradiance are discussed.
Monolayers of transition-metal dichalcogenides (TMDs) are characterized by an extraordinarily strong Coulomb interaction giving rise to tightly bound excitons with binding energies of hundreds of meV. Excitons dominate the optical response as well as the ultrafast dynamics in TMDs. As a result, a microscopic understanding of exciton dynamics is the key for technological application of these materials. In spite of this immense importance, elementary processes guiding the formation and relaxation of excitons after optical excitation of an electron-hole plasma has remained unexplored to a large extent. Here, we provide a fully quantum mechanical description of momentum- and energy-resolved exciton dynamics in monolayer molybdenum diselenide (MoSe$_2$) including optical excitation, formation of excitons, radiative recombination as well as phonon-induced cascade-like relaxation down to the excitonic ground state. Based on the gained insights, we reveal experimentally measurable features in pump-probe spectra providing evidence for the exciton relaxation cascade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا