ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniqueness of non-trivial spherically symmetric black hole solution in special classes of F(R) gravitational theory

78   0   0.0 ( 0 )
 نشر من قبل Gamal G.L. Nashed
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.G.L. Nashed




اسأل ChatGPT حول البحث

We show, in detail, that the only non-trivial black hole (BH) solutions for a neutral as well as a charged spherically symmetric space-times, using the class ${textit F(R)}={textit R}pm{textit F_1 (R)} $, must-have metric potentials in the form $h(r)=frac{1}{2}-frac{2M}{r}$ and $h(r)=frac{1}{2}-frac{2M}{r}+frac{q^2}{r^2}$. These BHs have a non-trivial form of Ricci scalar, i.e., $R=frac{1}{r^2}$ and the form of ${textit F_1 (R)}=mpfrac{sqrt{textit R}} {3M} $. We repeat the same procedure for (Anti-)de Sitter, (A)dS, space-time and got the metric potentials of neutral as well as charged in the form $h(r)=frac{1}{2}-frac{2M}{r}-frac{2Lambda r^2} {3} $ and $h(r)=frac{1}{2}-frac{2M}{r}+frac{q^2}{r^2}-frac{2Lambda r^2} {3} $, respectively. The Ricci scalar of the (A)dS space-times has the form ${textit R}=frac{1+8r^2Lambda}{r^2}$ and the form of ${textit F_1(R)}=mpfrac{textit 2sqrt{R-8Lambda}}{3M}$. We calculate the thermodynamical quantities, Hawking temperature, entropy, quasi-local energy, and Gibbs-free energy for all the derived BHs, that behaves asymptotically as flat and (A)dS, and show that they give acceptable physical thermodynamical quantities consistent with the literature. Finally, we prove the validity of the first law of thermodynamics for those BHs.



قيم البحث

اقرأ أيضاً

97 - G.G.L. Nashed , S. Nojiri 2020
Recent observation shows that general relativity (GR) is not valid in the strong regime. $mathit{f(R)}$ gravity where $mathit{R}$ is the Ricci scalar, is regarded to be one of good candidates able to cure the anomalies appeared in the conventional ge neral relativity. In this realm, we apply the equation of motions of $mathit{f(R)}$ gravity to a spherically symmetric spacetime with two unknown functions and derive original black hole (BH) solutions without any constrains on the Ricci scalar as well as on the form of $mathit{f(R)}$ gravity. Those solutions depend on a convolution function and are deviating from the Schwarzschild solution of the Einstein GR. These solutions are characterized by the gravitational mass of the system and the convolution function that in the asymptotic form gives extra terms that are responsible to make such BHs different from GR. Also, we show that these extra terms make the singularities of the invariants much weaker than those of the GR BH. We analyze such BHs using the trend of thermodynamics and show their consistency with the well known quantities in thermodynamics like the Hawking radiation, entropy and quasi-local energy. We also show that our BH solutions satisfy the first law of thermodynamics. Moreover, we study the stability analysis using the odd-type mode and shows that all the derived BHs are stable and have radial speed equal to one. Finally, using the geodesic deviations we derive the stability conditions of these BHs.
We consider the new horizon first law in $f(R)$ theory with general spherically symmetric black hole. We derive the general formulas to computed the entropy and energy of the black hole. For applications, some nontrivial black hole solutions in some popular $f(R)$ theories are investigated, the entropies and the energies of black holes in these models are first calculated.
We analyse the vacuum static spherically symmetric space-time for a specific class of non-conservative theories of gravity based on the Rastalls theory. We obtain a new vacuum solution which has the same structure as the Schwarzschild-de Sitter solut ion in the General Relativity theory obtained with a cosmological constant playing the r^ole of source. We further discuss the structure (in particular, the coupling to matter fields) and some cosmological aspects of the underline non-conservative theory
We consider whether the new horizon-first law works in higher-dimensional $f(R)$ theory. We firstly obtain the general formulas to calculate the entropy and the energy of a general spherically-symmetric black hole in $D$-dimensional $f(R)$ theory. Fo r applications, we compute the entropies and the energies of some black hokes in some interesting higher-dimensional $f(R)$ theories.
The present work investigates the gravitational collapse of a perfect fluid in $f(R)$ gravity models. For a general $f(R)$ theory, it is shown analytically that a collapse is quite possible. The singularity formed as a result of the collapse is found to be a curvature singularity of shell focusing type. The possibility of the formation of an apparent horizon hiding the central singularity depends on the initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا