ﻻ يوجد ملخص باللغة العربية
We determine the exact solution of the Einstein field equations for the case of a spherically symmetric shell of liquid matter, characterized by an energy density which is constant with the Schwarzschild radial coordinate $r$ between two values $r_{1}$ and $r_{2}$. The solution is given in three regions, one being the well-known analytical Schwarzschild solution in the outer vacuum region, one being determined analytically in the inner vacuum region, and one being determined mostly analytically but partially numerically, within the matter region. The solutions for the temporal coefficient of the metric and for the pressure within this region are given in terms of a non-elementary but fairly straightforward real integral. We show that in this solution there is a singularity at the origin, and give the parameters of that singularity in terms of the geometrical and physical parameters of the shell. This does not correspond to an infinite concentration of matter, but in fact to zero energy density at the center. It does, however, imply that the spacetime within the spherical cavity is not flat, so that there is a non-trivial gravitational field there, in contrast with Newtonian gravitation. This gravitational field has the effect of stabilizing the geometrical configuration of the matter, since any particle of the matter that wanders out into the vacuum regions tends to be brought back to the bulk of the matter by the gravitational field.
We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity
A four-parameter class of exact asymptotically flat solutions of the Einstein-Maxwell equations involving only rational functions is presented. It is able to describe the exterior field of a slowly or rapidly rotating neutron star with poloidal magnetic field.
We present the exact solution to the linearized Maxwell equations in space-time slightly curved by a gravitational wave. We show that in general, even dealing with a first-order theory in the strength of the gravitational field, the solution can not
In this work a static solution of Einstein-Cartan (EC) equations in 2+1 dimensional space-time is given by considering classical spin-1/2 field as external source for torsion of the space-time. Here, the torsion tensor is obtained from metricity cond
A formalism for analyzing the complete set of field equations describing Macroscopic Gravity is presented. Using this formalism, a cosmological solution to the Macroscopic Gravity equations is determined. It is found that if a particular segment of t