ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Phonon-Cavity Coupling and Parametric Interaction in a Single Microcantilever under Ambient Conditions

115   0   0.0 ( 0 )
 نشر من قبل Qibin Zeng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parametrically tuning the oscillation dynamics of coupled micro/nano-mechanical resonators through a mechanical pump scheme has recently attracted great attentions from fundamental physics to various applications. However, the special design of the coupled resonators and low dissipation operation conditions significantly restrict the wide application of this tuning technique. In this study, we will show that, under ambient conditions, mechanical pump can parametrically control the oscillation dynamics in a single commercial microcantilever resonator. A strong phonon-cavity coupling with cooperativity up to ~398 and normal-mode splitting are observed in the microcantilever. The strong parametric interaction of the phonon-cavity coupling enables using mechanical pump to achieve a 43 dB (3 dB) parametric amplification (cooling). By utilizing mechanical pump, the force sensitivity and signal-to-noise ratio of the frequency-modulation Kelvin Probe Force Microscopy can be significantly improved in the ambient environment. Furthermore, both single-mode and two-mode thermomechanical noise squeezing states can be created in the microcantilever via applying mechanical pump.



قيم البحث

اقرأ أيضاً

336 - Z. P. Yin , S. Y. Savrasov , 2006
Linear response methods are applied to identify the increase in electron-phonon coupling in elemental yttrium that is responsible for its high superconducting critical temperature Tc, which reaches nearly 20 K at 115 GPa. While the evolution of the b and structure and density of states is smooth and seemingly modest, there is strong increase in the 4d content of the occupied conduction states under pressure. We find that the transverse mode near the L point of the fcc Brillouin zone, already soft at ambient pressure, becomes unstable (in harmonic approximation) at a relative volume V/Vo=0.60 (P ~ 42 GPa). The coupling to transverse branches is relatively strong at all high symmetry zone boundary points X, K, and L. Coupling to the longitudinal branches is not as strong, but extends over more regions of the Brillouin zone and involves higher frequencies. Evaluation of the electron-phonon spectral function $alpha^2F(omega)$ shows a very strong increase with pressure of coupling in the 2-7 meV range, with a steady increase also in the 7-20 meV range. These results demonstrates strong electron-phonon coupling in this system that can account for the observed range of Tc.
Plasmonic dimer cavities can induce extreme electric-field hot spots that allow one to access ultrastrong coupling regimes using Raman-type spectroscopy on single vibrating molecules. Using a generalized master equation, we study resonant Raman scatt ering in the strong coupling regime of cavity-QED, when also in the vibrational ultrastrong coupling regime, leading to phonon-dressed polaritons. The master equation rigorously includes spectral baths for the cavity and vibrational degrees of freedom, as well as a pure dephasing bath for the resonant two-level system, which play a significant role. Employing realistic parameters for gold dimer cavity modes, we investigate the emission spectra in several characteristic strong-coupling regimes, leading to extremely rich spectral resonances due to an interplay of phonon-modified polariton states and bath-induced resonances. We also show explicitly the failure of the standard master equation in these quantum nonlinear regimes.
177 - C.A. Potts , J.P. Davis 2020
The ability to achieve strong-coupling has made cavity-magnon systems an exciting platform for the development of hybrid quantum systems and the investigation of fundamental problems in physics. Unfortunately, current experimental realizations are co nstrained to operate at a single frequency, defined by the geometry of the microwave cavity. In this article we realize a highly-tunable, cryogenic, microwave cavity strongly coupled to magnetic spins. The cavity can be tuned in situ by up to 1.5 GHz, approximately 15% of its original 10 GHz resonance frequency. Moreover, this system remains within the strong-coupling regime at all frequencies with a cooperativity of approximately 800.
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f irst demonstrate high fidelity initialization and single-shot readout of an individual $^{13}$C nuclear spin. By including the intrinsic $^{14}$N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.
The interaction of Love waves with square array of pillars deposited on a cavity defined in a 2D holey phononic crystal is numerically investigated using Finite Element Method. First, the existence of SH surface modes is demonstrated separately for p hononic crystals that consist of square arrayed holes, or rectangular arrayed Ni pillars, respectively in, or on, a SiO2 film deposited on a ST-cut quartz substrate. The coupling between SH modes and torsional mode in pillars induces a transmission dip that occurs at a frequency located in the range of the band-gap of the holey phononic crystal. Second, a cavity is constructed by removing lines of holes in the holey phononic crystal and results in a transmission peak that matches the dip. The optimal geometrical parameters enable us to create a coupling of the cavity mode and the localized pillar mode by introducing lines of pillars into the cavity, which significantly improved the efficiency of the cavity without increasing the crystal size. The obtained results will pave the way to implement advanced designs of high-performance electroacoustic sensors based on coupling modes in phononic crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا