ﻻ يوجد ملخص باللغة العربية
We propose a new model for treating solid-phase photoprocesses in interstellar ice analogues. In this approach, photoionization and photoexcitation are included in more detail, and the production of electronically-excited (suprathermal) species is explicitly considered. In addition, we have included non-thermal, non-diffusive chemistry to account for the low-temperature characteristic of cold cores. As an initial test of our method, we have simulated two previous experimental studies involving the UV irradiation of pure solid O$_2$. In contrast to previous solid-state astrochemical model calculations which have used gas-phase photoabsorption cross-sections, we have employed solid-state cross-sections in our calculations. This method allows the model to be tested using well-constrained experiments rather than poorly constrained gas-phase abundances in ISM regions. Our results indicate that inclusion of non-thermal reactions and suprathermal species allows for reproduction of low-temperature solid-phase photoprocessing that simulate interstellar ices within cold ($sim$ 10 K) dense cores such as TMC-1.
A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of
Photon-stimulated desorption (PSD) is a process of interest for the two seemingly unrelated topics of accelerator vacuum dynamics and astrochemistry. Here we present an approach to studying PSD of interstellar ice analogs, i.e. condensed films of mol
Quantum computational chemistry is a potential application of quantum computers that is expected to effectively solve several quantum-chemistry problems, particularly the electronic structure problem. Quantum computational chemistry can be compared t
We explore the energetics of the titular reaction, which current astrochemical databases consider open at typical dense molecular (i.e., dark) cloud conditions. As is common for reactions involving the transfer of light particles, we assume that ther
Continuum emissions from dust grains are used as a general probe to constrain the initial physical conditions of molecular dense cores where new stars may born. To get as much information as possible from dust emissions, we have developed a tool, nam