ﻻ يوجد ملخص باللغة العربية
Local three- and four-point correlators yield important insight into strongly correlated systems and have many applications. However, the non-perturbative, accurate computation of multipoint correlators is challenging, particularly in the real-frequency domain for systems at low temperatures. In an accompanying paper, we introduce generalized spectral representations for multipoint correlators. Here, we develop a numerical renormalization group (NRG) approach, capable of efficiently evaluating these spectral representations, to compute local three- and four-point correlators of quantum impurity models. The key objects in our scheme are partial spectral functions, encoding the systems dynamical information. Their computation via NRG allows us to simultaneously resolve various multiparticle excitations down to the lowest energies. By subsequently convolving the partial spectral functions with appropriate kernels, we obtain multipoint correlators in the imaginary-frequency Matsubara, the real-frequency zero-temperature, and the real-frequency Keldysh formalisms. We present exemplary results for the connected four-point correlators of the Anderson impurity model, and for resonant inelastic x-ray scattering (RIXS) spectra of related impurity models. Our method can treat temperatures and frequencies -- imaginary or real -- of all magnitudes, from large to arbitrarily small ones.
The many-body problem is usually approached from one of two perspectives: the first originates from an action and is based on Feynman diagrams, the second is centered around a Hamiltonian and deals with quantum states and operators. The connection be
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction $U$ is either attractive or repulsive. When the spin current is blockaded
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievab