ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing local multipoint correlators using the numerical renormalization group

102   0   0.0 ( 0 )
 نشر من قبل Seung-Sup Lee Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Local three- and four-point correlators yield important insight into strongly correlated systems and have many applications. However, the non-perturbative, accurate computation of multipoint correlators is challenging, particularly in the real-frequency domain for systems at low temperatures. In an accompanying paper, we introduce generalized spectral representations for multipoint correlators. Here, we develop a numerical renormalization group (NRG) approach, capable of efficiently evaluating these spectral representations, to compute local three- and four-point correlators of quantum impurity models. The key objects in our scheme are partial spectral functions, encoding the systems dynamical information. Their computation via NRG allows us to simultaneously resolve various multiparticle excitations down to the lowest energies. By subsequently convolving the partial spectral functions with appropriate kernels, we obtain multipoint correlators in the imaginary-frequency Matsubara, the real-frequency zero-temperature, and the real-frequency Keldysh formalisms. We present exemplary results for the connected four-point correlators of the Anderson impurity model, and for resonant inelastic x-ray scattering (RIXS) spectra of related impurity models. Our method can treat temperatures and frequencies -- imaginary or real -- of all magnitudes, from large to arbitrarily small ones.



قيم البحث

اقرأ أيضاً

The many-body problem is usually approached from one of two perspectives: the first originates from an action and is based on Feynman diagrams, the second is centered around a Hamiltonian and deals with quantum states and operators. The connection be tween results obtained in either way is made through spectral (or Lehmann) representations, well known for two-point correlation functions. Here, we complete this picture by deriving generalized spectral representations for multipoint correlation functions that apply in all of the commonly used many-body frameworks: the imaginary-frequency Mastubara and the real-frequency zero-temperature and Keldysh formalisms. Our approach is based on separating spectral from time-ordering properties and thereby elucidates the relation between the three formalisms. The spectral representations of multipoint correlation functions consist of partial spectral functions and convolution kernels. The former are formalism independent but system specific; the latter are system independent but formalism specific. Using a numerical renormalization group (NRG) method described in an accompanying paper, we present numerical results for selected quantum impurity models. We focus on the four-point vertex (effective interaction) obtained for the single-impurity Anderson model and for the dynamical mean-field theory (DMFT) solution of the one-band Hubbard model. In the Matsubara formalism, we analyze the evolution of the vertex down to very low temperatures and describe the crossover from strongly interacting particles to weakly interacting quasiparticles. In the Keldysh formalism, we first benchmark our results at weak and infinitely strong interaction and then reveal the rich real-frequency structure of the DMFT vertex in the coexistence regime of a metallic and insulating solution.
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region $T lsim 0.1 T_{K}^{*} sim 0.2 T_{K}^{*}$, where $T_{K}^{*}$ is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.
73 - Tie-Feng Fang , Ai-Min Guo , 2018
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction $U$ is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly-correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing negative-$U$ charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. textbf{8}, 395 (2017)].
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievab le efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا