ﻻ يوجد ملخص باللغة العربية
This paper concerns the structural stability of smooth cylindrically symmetric transonic flows in a concentric cylinder. Both cylindrical and axi-symmetric perturbations are considered. The governing system here is of mixed elliptic-hyperbolic and changes type and the suitable formulation of boundary conditions at the boundaries is of great importance. First, we establish the existence and uniqueness of smooth cylindrical transonic spiral solutions with nonzero angular velocity and vorticity which are close to the background transonic flow with small perturbations of the Bernoullis function and the entropy at the outer cylinder and the flow angles at both the inner and outer cylinders independent of the symmetric axis, and it is shown that in this case, the sonic points of the flow are nonexceptional and noncharacteristically degenerate, and form a cylindrical surface. Second, we also prove the existence and uniqueness of axi-symmetric smooth transonic rotational flows which are adjacent to the background transonic flow, whose sonic points form an axi-symmetric surface. The key elements in our analysis are to utilize the deformation-curl decomposition for the steady Euler system introduced in cite{WengXin19} to deal with the hyperbolicity in subsonic regions and to find an appropriate multiplier for the linearized second order mixed type equations which are crucial to identify the suitable boundary conditions and to yield the important basic energy estimates.
In this paper, we investigate steady inviscid compressible flows with radial symmetry in an annulus. The major concerns are transonic flows with or without shocks. One of the main motivations is to elucidate the role played by the angular velocity in
We study stationary capillary-gravity waves in a two-dimensional body of water that rests above a flat ocean bed and below vacuum. This system is described by the Euler equations with a free surface. Our main result states that there exist large fami
We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier-Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in $L^p$ for some
We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbo
In this paper we prove existence, uniqueness and regularity of certain perturbed (subsonic--supersonic) transonic potential flows in a two-dimensional Riemannian manifold with convergent-divergent metric, which is an approximate model of the de Laval