ﻻ يوجد ملخص باللغة العربية
We review spherical and inhomogeneous analytic solutions of the field equations of Einstein and of scalar-tensor gravity, including Brans-Dicke theory, non-minimally (possibly conformally) coupled scalar fields, Horndeski, and beyond Horndeski/DHOST gravity. The zoo includes both static and dynamic solutions, asymptotically flat, and asymptotically Friedmann-Lema^itre-Robertson-Walker ones. We minimize overlap with existing books and reviews and we place emphasis on scalar field spacetimes and on geometries that are general within certain classes. Relations between various solutions, which have largely emerged during the last decade, are pointed out.
In this work we study static black holes in the regularized 4D Einstein-Gauss-Bonnet theory of gravity; a shift-symmetric scalar-tensor theory that belongs to the Horndeski class. This theory features a simple black hole solution that can be written
We compute families of spherically symmetric neutron-star models in two-derivative scalar-tensor theories of gravity with a massive scalar field. The numerical approach we present allows us to compute the resulting spacetimes out to infinite radius u
This paper provides an extended exploration of the inverse-chirp gravitational-wave signals from stellar collapse in massive scalar-tensor gravity reported in [Phys. Rev. Lett. {bf 119}, 201103]. We systematically explore the parameter space that cha
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss
The aim of this paper is to study the stability of soliton-like static solutions via non-linear simulations in the context of a special class of massive tensor-multi-scalar-theories of gravity whose target space metric admits Killing field(s) with a