ﻻ يوجد ملخص باللغة العربية
In this work, we investigate some aspects of an acoustic analogue of the two-dimensional Su-Schrieffer-Heeger model. The system is composed of alternating cross-section tubes connected in a square network, which in the limit of narrow tubes is described by a discrete model coinciding with the two-dimensional Su-Schrieffer-Heeger model. This model is known to host topological edge waves, and we develop a scattering theory to analyze how these waves scatter on edge structure changes. We show that these edge waves undergo a perfect reflection when scattering on a corner, incidentally leading to a new way of constructing corner modes. It is shown that reflection is high for a broad class of edge changes such as steps or defects. We then study consequences of this high reflectivity on finite networks. Globally, it appears that each straight part of edges, separated by corners or defects, hosts localized edge modes isolated from their neighbourhood.
Topological physics strongly relies on prototypical lattice model with particular symmetries. We report here on a theoretical and experimental work on acoustic waveguides that is directly mapped to the one-dimensional Su-Schrieffer-Heeger chiral mode
The Su-Schrieffer-Heeger (SSH) model on a two-dimensional square lattice has been considered as a significant platform for studying topological multipole insulators. However, due to the highly-degenerate bulk energy bands protected by $ C_{4v} $ and
We study the two-dimensional extension of the Su-Schrieffer-Heeger model in its higher order topological insulator phase, which is known to host corner states. Using the separability of the model into a product of one-dimensional Su-Schrieffer-Heeger
Motivated by recent experimental realizations of topological edge states in Su-Schrieffer-Heeger (SSH) chains, we theoretically study a ladder system whose legs are comprised of two such chains. We show that the ladder hosts a rich phase diagram and
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of t