Importance of long-ranged electron-electron interactions for the magnetic phase diagram of twisted bilayer graphene


الملخص بالإنكليزية

Electron-electron interactions are intrinsically long ranged, but many models of strongly interacting electrons only take short-ranged interactions into account. Here, we present results of atomistic calculations including both long-ranged and short-ranged electron-electron interactions for the magnetic phase diagram of twisted bilayer graphene and demonstrate that qualitatively different results are obtained when long-ranged interactions are neglected. In particular, we use Hartree theory augmented with Hubbard interactions and calculate the interacting spin susceptibility at a range of doping levels and twist angles near the magic angle to identify the dominant magnetic instabilities. At the magic angle, mostly anti-ferromagnetic order is found, while ferromagnetism dominates at other twist angles. Moreover, long-ranged interactions significantly increase the twist angle window in which strong correlation phenomena can be expected. These findings are in good agreement with available experimental data.

تحميل البحث