ﻻ يوجد ملخص باللغة العربية
Observations of Jupiters deep atmosphere by the Juno spacecraft have revealed several puzzling facts: The concentration of ammonia is variable down to pressures of tens of bars, and is strongly dependent on latitude. While most latitudes exhibit a low abundance, the Equatorial Zone of Jupiter has an abundance of ammonia that is high and nearly uniform with depth. In parallel, the Equatorial Zone is peculiar for its absence of lightning, which is otherwise prevalent most everywhere else on the planet. We show that a model accounting for the presence of small-scale convection and water storms originating in Jupiters deep atmosphere accounts for the observations. Where strong thunderstorms are observed on the planet, we estimate that the formation of ammonia-rich hail (mushballs) and subsequent downdrafts can deplete efficiency the upper atmosphere of its ammonia and transport it efficiently to the deeper levels. In the Equatorial Zone, the absence of thunderstorms shows that this process is not occurring, implying that small-scale convection can maintain a near-homogeneity of this region. A simple model satisfying mass and energy balance accounts for the main features of Junos MWR observations and successfully reproduces the inverse correlation seen between ammonia abundance and the lightning rate as function of latitude. We predict that in regions where ammonia is depleted, water should also be depleted to great depths. The fact that condensates are not well mixed by convection until far deeper than their condensation level has consequences for our understanding of Jupiters deep interior and of giant-planet atmospheres in general.
Observations of Jupiters gravity field by Juno have revealed surprisingly small values for the high order gravitational moments, considering the abundances of heavy elements measured by Galileo 20 years ago. The derivation of recent equations of stat
WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b
The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk
We present the discovery of a transiting hot Jupiter orbiting HIP 67522 ($T_{eff}sim5650$ K; $M_* sim 1.2 M_{odot}$) in the 10-20 Myr old Sco-Cen OB association. We identified the transits in the TESS data using our custom notch-filter planet search
We investigate the dust and gas distribution in the disk around HD 142527 based on ALMA observations of dust continuum, 13CO(3-2), and C18O(3-2) emission. The disk shows strong azimuthal asymmetry in the dust continuum emission, while gas emission is